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Abstract 
Object detection models were trained and applied to video 
footage of calves within an enclosed, undercover rearing 
area. It was demonstrated that by performing transfer 
learning using a relatively small selection of manually tagged 
frames, models able to detect calves, their heads and shelter 
entrances could be developed. The trained models detected 
around 90 % of objects in a frame on average, and were used 
to generate metrics detailing: the number of calves in view 
over a given period of time; the number of these that were 
within a shelter; and the number with their heads low to the 
ground – a potential indicator of illness. Further work is 
needed to assess the ability of the models to generalise to a 
diverse range of calve rearing environments. 
 
Introduction 
The objective of this project was to train and apply object 
detection models to video footage of calves within an 
enclosed, undercover rearing area. An example frame is 
shown in Figure 1, and key metrics are provided in Table 1. 
 

 
Figure 1 - Example frame from the provided video footage 

Video Pen Camera Time Duration Quality 
0 6 8 07:20 03:08 HD 
1 6 7 07:20 01:47 HD 
2 3 4 07:20 01:29 SD 
3 3 3 07:20 01:08 SD 
4 6 2 07:20 01:14 SD 
5 6 8 09:35 00:53 HD 
6 6 7 09:35 00:51 HD 
7 3 4 09:35 00:54 SD 
8 3 3 09:35 02:15 SD 
9 3 2 09:35 25:06 SD 

Table 1 – Summary information for the provided video footage 

Through applying object detection models to the footage, 
answers to the following types of question were sought: 
 
1. Where in the pen do the animals spend their time? 
2. With which other animals does each spend their time? 
3. Which animals tend to exhibit “head-droop”? 
4. Do any of the animals exhibit unusual or odd-one-out 

behaviour? 
 
To address these questions, it was hoped that a model could 
be developed to identify calves individually. The majority of 

the calves in the footage are Friesians, which have unique 
patterns of black and white markings that an object 
detection model could potentially be trained to distinguish. 
Labelled data would be required to train such a model 
(photos/footage of each calve by itself, or labels for each 
calve in the provided videos), however this was not readily 
available. The aims of this project were therefore refined to: 
 
1. Applying pre-trained object detection models to the 

footage and evaluating their performance 
2. Demonstrating that transfer-learning could be employed 

to produce superior models for identifying calves within 
the type of environment exhibited in the footage 

3. Generating models that can also detect the calves’ heads 
and the entrances to their “igloo” shelters 

4. Generating metrics from applying the models to the 
footage that help start to answer the above questions 

 
Part 1: Pre-Trained Object Detection Models 
The TensorFlow Object Detection API1 framework was used 
to run pre-trained models from the TensorFlow Detection 
Model Zoo2 against the provided footage. Each of the 
models had been pre-trained on the Microsoft COCO 
dataset3, which contains more than 200,000 tagged images 
across 80 object categories, including cow. The green shaded 
rows in Table 6 show the results of applying these models to 
a selection of frames. 
 
For classification problems, metrics such as accuracy, 
precision, recall and F1-score are used to measure model 
performance. However, object detection is both a 
classification (applying the correct label to an object) and 
localisation (predicting the correct location of an object) 
problem. The primary metric used to evaluate these models 
is mAP – mean average precision (see the appendix for a 
description of how mAP is calculated). In this project only the 
cow class was important, and so the average precision (AP) 
for this class was evaluated for each model. The results are 
shown in the green shaded rows of Table 3. 
 
In addition to AP, the fraction of ground truth objects 
detected (regardless of predicted class) with an intersection 
over union (IoU – see the appendix for a description) ≥ 0.5 
was measured. The pre-trained models sometimes mis-
classified the calves as dogs, sheep or even elephants – other 
classes of quadruped in the COCO dataset. As is the case for 
the provided footage, in any scenario where cameras will be 
covering an area solely populated by cows, predictions of all 
quadrupeds could be mapped to the cow class. Therefore, 
having correctly predicted classes is not necessarily the most 
important factor, and so mAP need not be the only metric 
used to compare models here. The mean IoU for the 
detected ground truth boxes (those counted in the 
aforementioned metric) was also determined. Both values 
are provided for each model, alongside the AP, in Table 3. 
 
To calculate these metrics it was necessary to produce 
ground truth boxes for several frames in the provided 
footage. An example of these (generated using Microsoft 
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VoTT4) is shown in Figure 2, and summary statistics of the 
tagging are provided in Table 2.  
 
The performance metrics in Table 3 were calculated using 
only the test dataset. The AP and fraction of ground truth 
objects detected by the models from the Model Zoo 
averaged approximately 50%, with the Faster R-CNN ResNet-
50 model achieving the highest AP. 
 

 
Figure 2 – Example video frame with calves manually tagged using VoTT 

Video Frames Cows 
Train Test Total Train Test Total 

0 15 6 21 78 32 110 
1 35 8 43 76 17 93 
2 16 5 21 94 30 124 
3 5 0 5 33 0 33 
4 7 2 9 33 10 43 
5 39 14 53 192 67 259 
6 45 7 52 275 41 316 
7 40 15 55 256 96 352 
8 0 1 1 0 6 6 
9 3 1 4 21 6 27 
Totals 205 59 264 1058 305 1363 

Table 2 – Training and test dataset metrics, including both the number of 
frames and number of individual cows manually tagged 

Report 
Section 

Model AP Fraction of Calves 
Detected 

Mean IoU  

1 Faster R-CNN 
ResNet-50 

0.545 0.523 0.805 

1 SSD ResNet-
50 FPN 

0.482 0.547 0.843 

1 Mask R-CNN 
ResNet-101 
Atrous 

0.458 0.528 0.862 

1 SSD 
MobileNet v1 
FPN 

0.333 0.457 0.807 

2 Faster R-CNN 
ResNet-50 
with Transfer 
Learning 

0.994 0.981 0.884 

3 Faster R-CNN 
ResNet-50 
with Transfer 
Learning 

0.873 0.992 0.927 

Table 3 – Average precision (AP), fraction of calves detected, and mean 
intersection over union (IoU) for the object detection models used in Part 1 

(green rows), Part 2 (blue row) and Part 3 (orange row) of this report 

Part 2: Transfer Learning to Improve Calf Detection 
In the next stage of the project, transfer learning was 
employed in an attempt to improve on the AP and ground 
truth object detection scores of the models used in Part 1. 

Training a CNN from scratch requires a large amount of data 
(the COCO dataset has more than 200,000 labelled images) 
and takes a significant amount of time; even when using 
GPU-enabled devices. In transfer learning we utilise the 
architecture of an existing model, along with most of the 
pre-trained weights that were learned on another dataset. 
Weights in only the final few layers are discarded and re-
learned against a tagged dataset of custom object classes, 
which need only contain a few hundred labelled images. 
 
The COCO trained Faster R-CNN ResNet-50 model, which 
yielded the highest AP score in Part 1, was used as the base 
for transfer learning. Table 2 summarises the data used for 
training and testing. 
 
Initial attempts were made to train the model with a CPU-
device; however, the time required would have limited the 
number iterations possible to complete for this project. 
Using Google’s Colaboratory5 platform the same training 
could be performed on a GPU-enabled device for free (up to 
12 hours). Compared to a CPU-device, a 22-fold increase in 
training speed was observed, as illustrated in Figure 3 and 4. 
 

 
Figure 3 - Time per model training step on CPU and GPU environments 

 
Figure 4 - Loss vs time for training on CPU and GPU environments 

When applied to the same set of frames used for model 
evaluation in Part 1, the results achieved by the transfer-
learned model are shown in the blue shaded row of Table 3, 
and a selection of tagged frames is shown in Figure 5 and the 
blue shaded row of Table 6. 
 
The achieved AP and fraction of objects detected 
approaches 1, however these metrics are likely somewhat 
misleading. The diversity of camera angles in the dataset is 
limited; the environment in each case is the same (the same 
pens, but with some differences in lighting conditions); the 
number of unique calves is small; and the test dataset was 
pulled from the same selection of videos as the training set. 
The model tended to predict objects as cows with certainty 
near or equal to 1, however the only class of object it has 
been trained to be aware of is cow. 
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Figure 5 – Calves detected in a sample frame by the Faster R-CNN ResNet-
50 model, with weights learned via transfer-learned using tagged footage 

Yet, a farmer present in one frame was predicted to be a cow 
with 45 % confidence – far lower than any actual cow. 
 
The degree of overfitting to the training data and the 
model’s ability to generalise to other environments cannot 
be stated without a more diverse set of tagged validation 
data. However, this exercise has demonstrated that with a 
relatively small set of tagged data and fewer than 12 hours 
of training it is possible to generate a model that can detect 
almost all calves in a particular environment. If the current 
model does not generalise well to other calve rearing 
environments (say an outdoor space), it would be relatively 
simple to re-run transfer learning with a more diverse set of 
tagged frames. If the performance of the generalised model 
is not sufficiently high, a small selection of models, 
specialised for different environments, could be trained. 
Farmers could select the environment most closely matching 
their own, and guidance can be provided on the positioning 
of cameras for optimal model performance. 
 
Part 3: Transfer Learning to Detect Additional Classes 
In Part 2 it was demonstrated that transfer learning could be 
used to generate an object detection model that can detect 
a very high fraction of calves. Building on this success, the 
next aim was to investigate the ability to use transfer 
learning to detect more nuanced objects that could help 
answer two of the initially posed questions: where do the 
animals spend their time, and do any exhibit “head-droop”? 
 
The training and test datasets used in Part 2 were expanded 
to include the calves’ heads and the entrances to the “igloo” 
shelters at the rear of their enclosures. Given the strong 
performance of the model produced in Part 2, some 
additional calves were tagged: those in very dark conditions 
or behind gratings, and those largely occluded by other 
calves. An example tagged frame is shown in Figure 6, and 
summary statistics of the tagging are provided in Table 4. 
 
Examples of the tagged images produced by the new trained 
model are shown in Figure 7 and the orange row of Table 6. 
The results of applying the model to the same test images as 
used in Parts 1 and 2 (those summarised in Table 4) are 
provided in the orange row of Table 3. The performance 
metrics from applying the model to the test dataset that 
included all three tagged classes are shown in Table 5. 

 
Figure 6 – Example video frame with calves, their heads, and the entrance 

to their “igloo” shelter manually tagged using VoTT 

 
Figure 7 – Calves, their heads and “igloo” entrance detected in a sample 
video frame by the Faster R-CNN ResNet-50 model, with weights learned 

via transfer-learned using tagged footage 

Video Frames Calves Heads Igloos 
Train Test Train Test Train Test Train Test 

0 15 6 81 30 67 24 15 6 
1 36 7 79 14 79 14 108 21 
2 17 4 169 40 103 27 51 12 
3 3 2 38 24 23 12 9 6 
4 7 2 42 12 32 8 21 6 
5 39 15 282 112 104 41 39 15 
6 39 13 276 87 103 35 116 39 
7 43 12 321 87 146 40 128 35 
8 1 0 8 0 4 0 3 0 
9 15 3 118 25 66 20 45 9 
Totals 215 64 1414 431 727 221 535 149 

Table 4 - Training and test dataset metrics, including the number of frames 
and individual calves, calf heads, and “igloo” entrances manually tagged 

AP (cow) 0.857 
AP (head) 0.172 
AP (igloo-entrance) 0.677 
mAP 0.569 
Fraction of Ground Truth Objects Detected 0.899 
Mean IoU for Detected Ground Truth Objects 0.867 

Table 5 – Average precision (AP) and mAP scores, fraction of ground truth 
objects detected, and mean IoU for the model produced in Part 3 

The lower performance of this model relative to the one 
produced in Part 2, as indicated in Table 3, was investigated 
and found to be largely due to the newer model detecting 
calves that had not been tagged in the first dataset. This 
could be an indicator of overfitting to the new training 
dataset, or a genuine improvement in the ability to detect 
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calves in less clear conditions. Again, a more diverse dataset 
would be required to determine which case is true. 
 
Whilst the AP figures for the head and “igloo”-entrance 
classes shown in Table 5 appear low, there are two possible 
mitigating causes. Firstly, the model is detecting objects 
within other objects (heads on cows, and cows inside their 
“igloos”). Secondly, as observed with the model in Part 2, 
objects are being predicted with very high scores – values of 
1 in many cases. Because of the way AP is calculated for each 
object class (see the appendix) these two factors make the 
metric unreliable. The fraction of ground truth objects 
detected and the associated mean IoU for these are 
therefore arguably fairer evaluation metrics, and ones which 
the model performed well against. 
 
Part 4: Extracting Metrics from Object Detections 
The model trained in Part 3 was applied to video 9, which has 
a duration of 25 minutes. A frame was sampled each second, 
and the following metrics recorded: the number of calves 
detected; the number that were inside the “igloo” shelter; 
the number of heads detected; and the number of calves 
with their head down. A 60 second rolling average of the 
results obtained are shown in Figure 8. 
 

 
Figure 8 – Rolling 60s average of the object detection metrics produced 

from applying the model trained in Part 3 to video 9 

To determine whether a cow was inside an “igloo” and 
identify which calve a detected head likely belonged to, the 
degree of overlap of every detected object with every other 
detected object was calculated. This was defined as the area 
of the overlapping region between the bounding boxes 
divided by the area of whichever bounding box was smaller. 
A smaller object completely enveloped by a larger one would 
therefore have an overlap score of 1. 
 
A detected head was associated with the calf that had the 
highest overlap; although when calves were very close 
together this did not always yield the correct answer. Once 
a head had been associated with a calf, the relative vertical 
position of the head relative to the calf’s bounding box was 
determined. The model was unable to determine the 
orientation of detected calves (whether they faced away, 
towards or sideways from the camera) which made 
determining whether their head was truly down challenging. 
 
For the results shown in Figure 8, a calf was said to be inside 
the “igloo” shelter if the overlap with the entrance was 
greater than or equal to 0.97. A calf was said to have its head 

down if the relative vertical position of its head relative to its 
body was less than or equal to 0.7. These parameters would 
require further investigation to yield more accurate results. 
 
Conclusions & Future Work 
This project has shown that with relative ease (0.5-1 days to 
tag circa. 200 frames, followed by 0.5-1 days of training on a 
GPU-enabled device) an object detection model that will 
perform strongly under similar conditions (camera angle, 
environment, etc.) to the training/test data set can be 
produced. The ability for such a model to generalise to other 
environments has not been determined, and the possibility 
that the models trained in this report overfit their training 
data cannot be ignored. However, assuming the possible 
environments for rearing calves is limited, a small selection 
of models could be trained, which farmers could select from. 
 
The results of this project indicate it is possible to detect the 
location of calves in a frame and their head position, with a 
certain degree of confidence, which can then be used to 
produce summary metrics. A lack of time and available 
tagged data prevented investigation of whether models 
could be trained to identify calves individually, however the 
framework and code produced in this project could be used 
to perform such training and assess the resulting models.  
 
Other possible areas for future investigation include: 
 
- Applying augmentation to the tagged data: flipping, 

rotating and adjusting the brightness to artificially 
increase the training and test dataset. The functionality to 
flip and rotate images is present in the project code, but 
time was not available to employ it on the datasets. 

- Clusters: Implementing a metric to detect and report on 
the clustering of calves. This could be used to identify 
calves that are not socialising; a potential illness indicator. 

- Object tracking: an attempt could be made to track 
individual calves and determine their degree of activity. If 
it is not possible to train an object detection model to 
uniquely identify each calf, tracking individual calves may 
be a suitable alternative way to monitor their behaviour. 

- Re-introducing the ability to detect humans: a farmer 
delivering food or new bedding should be an exciting 
event for calves; not exhibiting increased activity in such 
circumstances could be a sign of illness. 

- Transfer learning with light/mobile models: the time 
needed to detect objects in a single frame tended to be 
around the 1 second mark, with far superior results again 
seen on GPU-enabled devices. Whilst potentially suitable 
for offline analysis on specialised servers, to enable real-
time detection on remote devices it may be necessary to 
investigate training models designed for mobile devices. 
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 Video 
 1 5 6 8 

Original 
Frames 

    

Faster R-
CNN 
ResNet-50 

    

SSD 
ResNet-50 
FPN 

    

Mask R-
CNN 
ResNet-
101 
Atrous 

    

SSD 
MobileNet 
v1 FPN 

    

Faster R-
CNN 
ResNet-50 
with 
Transfer 
Learning - 
Cows Only 

    

Faster R-
CNN 
ResNet-50 
with 
Transfer 
Learning – 
Cows, 
Heads and 
“Igloo” 
Entrance     

Table 6 – Example video frames showing the objects detected by the models used in Part 1 (green rows), Part 2 (blue row) and Part 3 (orange row) of this report. 
Only objects with a prediction score greater than or equal to 0.25 are shown.
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Appendix: Calculating the Mean Average Precision (mAP) 
 
To determine the mAP for an object detection model it is 
first necessary to calculate the intersection over union (IoU) 
of all detections. As shown by Equation A2, IoU is the ratio 
between the area of intersection and the area of union of 
the ground truth (i.e. manually tagged) bounding boxes and 
those predicted by the model (see Figure A1). 
 
For a given class of object, we use the IoU to determine the 
number of true positive (TP), false positive (FP) and false 
negative (FN) predictions, which are defined as follows: 
 
- TP: bounding boxes where the IoU with the ground truth 

is above a defined threshold (typically 0.5), and the 
correct object class has been identified 

- FP: bounding boxes where the IoU with the ground truth 
is below a defined threshold 

- FN: instances where the model failed to produce a 
bounding box for a ground truth 

 
True negatives (TN) are not evaluated as all images are 
expected to contain at least one ground truth. 
 
Using the definitions above, we can calculate the precision 
(Equation A3) and recall (Equation A4) of the detections for 
a given object class across a test set of images. 
 
Each prediction made by the model has a probability score, 
which we use to rank the predictions from highest to lowest 
and generate a table of precision vs. recall values – as show 
in Table A1. We initially consider only the first prediction, 
determine if it is a TP, calculate the precision and recall 
values, and then update these values to include the next 
prediction, and so on. Given the actual number of objects in 
an image is fixed (i.e. the number of ground truths tagged), 
the recall increases with each correctly identified object, 
whereas precision will increase and decrease as it 
encounters more true and false positives. 
 
To calculate the average precision (AP) for a given class of 
object, we segment the recall values into 11 parts; from 0 to 
1 in intervals of 0.1. We generate interpolated precision 
values (𝑝!"#$%&) for each recall value (𝑟) by taking the value 
of maximum precision occurring at 𝑟̃, where 𝑟̃ ≥ 𝑟 – as 
shown by Equation A1. The interpolated results are plotted 
alongside the true precision and recall values to produce a 
Precision/Recall (PR) curve – as shown in Figure A2. The 
average precision is then calculated as the area under the 
interpolated PR curve. 
 

𝑝!"#$%&(𝑟) = 	max%̃(%
𝑝(𝑟̃) 

Equation A1 

This AP calculation method was used in the Pascal VOC2008 
competition and has since been improved – primarily to 
enhance the ability to measure differences for object classes 
with low AP value. However, the 2008 method generates a 
suitable metric for performing comparisons in this project. 
 
The mean of the AP values calculated for each object class in 
the ground truth label set values is the mean average 
precision (mAP) of the object detection model. 

 
 

 
Figure A1 – Illustration of the intersection and union between ground truth 

and predicted bounding boxes 

 

𝐼𝑜𝑈 = 	
𝑎!"#$%&$'#!("

𝑎)%(*"	#%*#, + 𝑎-%$.!'#!(" − 𝑎!"#$&$'#!("
 

Equation A2 - Equation for determining IoU 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

Equation A3 - Precision Equation 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

Equation A4 - Recall Equation 

 
Rank Score TP TP 

Cumulative 
Total 

Precision Recall 

1 0.933 1 1 1.00 0.17 
2 0.855 1 2 1.00 0.33 
3 0.829 0 2 0.67 0.33 
4 0.811 0 2 0.50 0.33 
5 0.751 0 2 0.40 0.33 
6 0.615 1 3 0.50 0.50 
7 0.587 1 4 0.57 0.67 
8 0.384 0 4 0.50 0.67 
9 0.367 0 4 0.44 0.67 
10 0.325 0 4 0.40 0.67 
11 0.311 0 4 0.36 0.67 
12 0.241 0 4 0.33 0.67 
13 0.220 0 4 0.31 0.67 
14 0.171 0 4 0.29 0.67 
15 0.166 1 5 0.33 0.83 
16 0.086 1 6 0.38 1.00 
Table A1 - Precision and recall calculations – table is in descending order 

based on the score 

 
Figure A2 - An example PR curve 


