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Abstract

In many industries it is too dangerous or expensive to learn via online interaction with the
real-world. The goal of offline reinforcement learning (RL) is therefore to learn a policy
solely from collected data. Using this data, offline model-based RL (MBRL) methods
employ supervised learning to train a model of the world (a dynamics model), against
which a learning agent can safely interact. In our work, we define domain generalisation
with reference to the logging/behavioural policies employed during data collection, such
as when different human demonstrators have performed a given task, each following their
own decision process. Diverse demonstrators give rise to varied data distributions, and so
domain-generalisation techniques can, in theory, be used to learn dynamics models that are
robust to distributional shifts encountered during policy training.

To this end, we apply Risk Extrapolation (REx) (Krueger et al., 2020) to the process of
training dynamics models. As a proxy for data collected from real-world demonstrators, we
train policies using online RL methods and use these to generate datasets. We demonstrate
that models trained with REx exhibit improved domain generalisation performance, and
achieve greater equality of risks across out-of-distribution domains. Further, we find that
these models enable superior policies to be learned in the offline MBRL setting, and increase
the stability of the policy learning process.
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Chapter 1

Introduction

How do we learn to complete new tasks? In many cases the answer is by trial-and-error: we
attempt the task and make mistakes repeatedly, but we learn in the process, and eventually
succeed and gain a new skill. However, we are also often able to learn by being shown;
typically through the observation of others attempting to perform the same task. Can this
approach of learning through demonstration be similarly adopted in reinforcement learning
(RL)?

In the standard online RL paradigm, agents often require hundreds-of-thousands or mil-
lions of interactions with the environment in order to learn an optimal policy for completing
a task. In many settings, however, the process of exploration in the real world is undesirable,
impractical or unsafe (Levine et al., 2020; Prudencio et al., 2022). Executing the actions
suggested by a learning agent could present significant danger; for instance, in the fields of
autonomous driving, robotics, and manufacturing. Alternatively, there may be expensive
consequences for mistakes, such as in the financial markets and business decisions making.

In suitably simple scenarios, and with appropriate domain knowledge, a simulated version
of the real environment can be created and used to train agents with superhuman performance
– as demonstrated by AlphaGo (Silver et al., 2016). However, most real-world scenarios are
too complex for sufficiently high fidelity simulators to be developed within reasonable time
and cost (Dulac-Arnold et al., 2019; Zhao et al., 2020).

It would therefore be preferable to enable learning from demonstration, rather than
interaction. In industrial settings and healthcare there are often significant volumes of data
already available, which represent demonstrations of how a task can be completed. These are
provided by one or more demonstrators, each executing their own behavioural policy – their
method of achieving the task. For example, the computer logs of a power plant controlled by
several operators will reflect their combined behavioural policies.



2 Introduction

The field of offline RL aims to develop techniques for learning from static data without
any interaction with the real environment (Levine et al., 2020; Prudencio et al., 2022). It
holds significant promise for enabling large, pre-collected datasets to be turned into powerful
decision-making engines (Levine et al., 2020). While there are various methods by which
this goal can be achieved, our work focuses on those that perform supervised learning to
train a model of the environment, against which a learning agent can safely interact.

A limiting factor in the ability of offline model-based RL methods to learn optimal policies
is distributional shift (Levine et al., 2020; Yu et al., 2020). Data generated by a demonstrator
will be sampled from the state visitation distribution induced by their behavioural policy.
Unless steps are taken to avoid it, models trained on this data are likely to overfit this
distribution and perform poorly when presented with data from another distribution – they
will fail to generalise. When an RL agent attempts to use the model to learn a policy it
will typically start with some form of random policy, and so immediately induce a new
state visitation distribution, different from that observed during training. Unless constrained
towards the demonstrator’s behaviour policy (a method employed by many of the current
SOTA offline RL algorithms (Kidambi et al., 2020; Yu et al., 2020)), the various iterations of
the policy being learned will continue to induce state distributions differing from that of the
behaviour policy. If the model has indeed overfit to the training distribution, it will likely
perform poorly under these distributional shifts. This may inhibit learning entirely, or may
be exhibited as model exploitation, whereby the learned policy obtains higher reward using
the dynamics model than it does when deployed to the real environment (Cang et al., 2021;
Clavera et al., 2018; Janner et al., 2019).

Rather than constraining the learning policy’s exploration, the aim of our work is to
increase the robustness of dynamics models to distributional shift by applying Risk Extrap-
olation (REx) (Krueger et al., 2020) during training. REx assumes that training data from
multiple sources is available, each representing a domain. While the domain that generated
each training record is known, no knowledge about the domain itself is required. By enforcing
the training losses, or risks, across the domains present in the training data to be equal, REx
aims to achieve the same risk on out-of-distribution domains, even if the distributional shift
is more extreme than those observed at training/test time (Krueger et al., 2020).

In our work, each behavioural policy, or demonstrator, is considered to be a domain. By
collecting data from multiple demonstrators and applying REx, we hypothesise that dynamics
models can be trained which exhibit improved domain-generalisation performance and are
therefore able to support the learning of more optimal policies.



3 Introduction

1.1 Contributions

The main contributions of this work can be summarised as follows:

1. We implement an end-to-end pipeline to support the training and evaluation of offline
model-based reinforcement learning algorithms in the multi-demonstrator setting.

2. To mimic the collection of data from multiple demonstrators, we train a collection
of policies using online RL algorithms. We use each of these to generate individual
datasets, and combine them into multi-demonstrator datasets.

3. We show that dynamics models trained with REx exhibit improved domain-generalisation
performance, and achieve a greater equality of risks across out-of-distribution domains.

4. In our experiments, we observe that dynamics models trained with REx enable superior
policies to be learned in the offline model-based reinforcement learning setting, and
increase the stability of the policy learning process.

5. Although dynamics models trained with REx displayed increased robustness to distri-
butional shifts, we find that incorporating methods from existing SOTA methods for
limiting distributional shift can be beneficial to policy training.

1.2 Overview

This thesis is structured as follows:

• Chapter 2 - Background: We provide a technical overview of offline model-based
reinforcement learning and domain-generalisation, and review the key algorithms in
each space.

• Chapter 3 - Experiment Pipeline and Overview: The end-to-end nature of this
work, from data generation to training policies offline, necessitated the design and
implementation of a suitable experiment pipeline. We describe this pipeline and
provide a roadmap to the experiments run.

• Chapter 4 - Demonstrator Dataset Creation: We define a set of data requirements
for this work, and evaluate existing benchmarks against these. Having determined that
none are suitable, we use online RL algorithms to generate proxy demonstrators, from
which we create individual- and multi-demonstrator datasets.



4 Introduction

• Chapter 5 - Dynamics Model Training and Evaluation: Using the datasets created in
the previous chapter, we train dynamics models and assess their domain generalisation
performance.

• Chapter 6 - Policy Training and Evaluation: We use the dynamics models trained in
the previous chapter to learn policies offline. We evaluate the performance of these
policies, and identify the benefits provided by dynamics models trained with REx.

• Chapter 7 - Conclusions: We provide an overview of what has been learned in this
work, and recommend potential future avenues of work.



Chapter 2

Background

In our work, we draw together methods from the fields of reinforcement learning (RL) and
domain generalisation. We first provide a recap of the goals and learning paradigms of RL,
before focusing on the issue of distributional shift and reviewing the existing methods in
literature which aim to limit its extent. Rather than minimise distributional shift, our goal
is to improve robustness to shifts by improving domain generalisation performance. We
give a high level overview of domain generalisation theory and techniques, focusing on Risk
Extrapolation (REx) – the method we apply to the training of dynamics models in offline
model-based RL.

2.1 Reinforcement Learning

Reinforcement learning offers a mathematical formalism for learning-based decision making
and control. It encompasses an ever-growing variety of algorithms with the common goal
of achieving a desired task, or sequence of tasks, by automatically acquiring behavioural
skills, represented by policies, that maximise a reward signal (Levine et al., 2020; Sutton
and Barto, 2018). It offers the potential to automate a wide variety of tasks and reveal novel
ways of achieving them. Consequently, RL methods are increasingly finding use in industrial
applications, such as robotics (Gu et al., 2016; Ibarz et al., 2021), autonomous vehicles (El
Sallab et al., 2017; Kiran et al., 2020) and the optimisation of smart energy grids (Sogabe
et al., 2018).

2.1.1 RL Definitions and Notation

RL is concerned with learning to control dynamical systems described as Markov decision
processes (MDPs). An MDPM is defined by the tupleM= (S,A,T,r,ρ0,γ), where states
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s ∈ S and actions a ∈ A are members of the state and action spaces S and A respectively,
T (s′|s,a) denotes the transition distribution, r(s,a) denotes the reward function, ρ0(s) denotes
the initial state distribution, and γ ∈ (0,1] denotes a discount factor commonly applied to
infinite-horizon processes. We consider continuous state and action spaces and finite horizon
tasks in our work.

We assume that the Markov property holds, which dictates that the state encompasses all
information about agents’ previous interactions with the environment that are pertinent to
predicting future states (Sutton and Barto, 2018). The transition distribution, T (s′|s,a), then
completely characterises the dynamics of the environment.

Within an MDP, our aim is to learn a policy, π(a|s), which denotes the probability of
taking action a when in state s. The expected return of policy π under MDPM, J(π,M), is
given by Equation 2.1.

J(π,M) = Ea∼π(·|s),s0∼ρ0,s′∼T (·|s,a)

[
H

∑
t=0

r(st ,at)

]
(2.1)

Trajectories, τ , are sequences of states and actions, (st ,at ,st+1,at+1, . . . ,sH), where the
horizon, H, could be infinite for non-episodic tasks (Levine et al., 2020). The trajectory
distribution, pπ , induced by policy π under MDPM is given by Equation 2.2.

pπ(τ) = ρ0(s0)
H

∏
t=0

π(at |st)T (st+1|st ,at) (2.2)

The marginal distributional over states induced by policy π will be denoted by dπ(s), and
that over state-action pairs by dπ(s,a). The objective of reinforcement learning is to find an
optimal policy, π∗(a|s), that maximises the expected sum of rewards under the trajectory
distribution, as shown by Equation 2.3.

π
∗ = argmax

π
J(π,M) = argmax

π
Eτ∼ρπ (τ)

[
∞

∑
t=0

r(st ,at)

]
(2.3)

2.1.2 Online Reinforcement Learning

Inspired by diagrams presented by Levine et al. (2020) and Prudencio et al. (2022), Figure
2.1 illustrates a collection of learning paradigms that can be used as a taxonomy to classify
RL algorithms.

Online RL involves the iterative collection of experience through interaction with the
environment. In on-policy RL we employ the latest iteration of the policy being learned to
decide which actions to take, and use the experience collected to make further improvements
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Fig. 2.1 Illustration of three common RL learning paradigms: online, off-policy and offline,
inspired by diagrams presented by Levine et al. (2020) and Prudencio et al. (2022). D is a
buffer containing transitions collected during or before training. πk and πk+1 are iterations of
a policy being learned, πβ is a behaviour policy, and πoff is a policy learned offline using a
static dataset.

to the policy (Sutton and Barto, 2018). The need to continuously collect fresh experience
leads to one of the major issues with online RL techniques: sample efficiency.

In off-policy RL, an agent is trained using experience collected from policies other than
the one currently being improved. When this is a completely separate policy it is referred
to as a behaviour policy, πβ . On- and off-policy methods can be used together, whereby
newly collected online experiences are augmented with interactions sampled from a buffer
populated during the course of training, D. This can lead to significant improvements in
sample efficiency.

2.1.3 Offline Reinforcement Learning

Offline RL, often also referred to as batch RL, algorithms are a subset of off-policy algorithms,
whereby one or more behaviour policies interact with the environment to collect a static
dataset of experiences that are later used to learn a policy, πoff, without any further interaction
with the environment (Levine et al., 2020; Prudencio et al., 2022). The behaviour policies
may themselves be RL agents, but more commonly will be another form of control policy
(e.g., a rule-based control program) or a human (expert or otherwise). In our work, we
consider independent agents acting to achieve the same task in the same environment to be
independent behaviour policies.

Prudencio et al. (2022) propose a taxonomy to categorise offline RL methods which is
briefly summarised here. Methods are grouped based on how they utilise the collected rollout
data: learning a dynamics model, learning a trajectory distribution, or using the data directly
in model-free approaches, which learn direct mappings from states to actions (Janner et al.,
2019). Planning methods utilise either a learned dynamics model or trajectory distribution
to determine the optimal actions to take at each time step. Alternatively, dynamics models
can be used to generate additional data, Dmodel, with which Q-learning and actor-critic based
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algorithms can then be used to learn a policy. This offline model-based RL (MBRL) approach
is the focus of our work.

While the transition distribution of an MDP is independent of the policy, the state and
state-action visitation distributions induced by behavioural policy πβ , dπβ

(s) and dπβ

(s,a),
are not. The pool of data collected for offline policy training is typically assumed to be
composed of iid samples drawn from dπβ

(s,a), and is likely to cover only a fraction of
the total state-action space. In order to learn optimal policies, we would like our learning
algorithm to generalise to other areas of this space; departing from the support of the training
data in order to learn good behaviours that are not exhibited in the static dataset (Wu et al.,
2021; Yu et al., 2020). The learning policy would therefore induce new state and state-action
visitation distributions, dπoff

(s) and dπoff
(s,a), which may differ significantly from those of

the behaviour policy. Numerous other factors will additionally contribute to changes in the
visitation distributions, such as the initial state distribution used. Central to the development
of many off-policy and offline RL algorithms are methods for limiting these distributional
shifts.

2.1.4 The Impact of Distributional Shift

Errors made by the learned dynamics model, such as those arising from poor generalisation
performance under distributional shift, can result in model exploitation. The policy being
trained learns to take advantage of model errors when optimising the reward, leading to poor
performance in the true environment (Cang et al., 2021; Clavera et al., 2018; Janner et al.,
2019; Levine et al., 2020; Rajeswaran et al., 2016). However, in more extreme cases, model
exploitation causes significant instability in training (Kurutach et al., 2018; Matsushima et al.,
2020).

Q-learning and actor-critic algorithms aim to learn the optimal state-action value function,
Q∗(a|s), by iteratively applying the Bellman optimality operator, T , given by Equation 2.4
(Kumar et al., 2019; Sutton and Barto, 2018; Wu et al., 2021).

T Q̂(s,a) := r(s,a)+ γET (s′|s,a)[max
a′

Q̂(s′,a′)] (2.4)

For large state spaces, the Q-function approximator Q̂(s,a), the critic, is typically a neural
network, which is trained using dynamic programming by minimising the Bellman Squared
Error E[(Q−T Q̂)2] (Haarnoja et al., 2018a,b; Kumar et al., 2019; Lillicrap et al., 2015;
Sutton and Barto, 2018). In continuous action spaces maxa′ Q̂(s′,a′) is typically intractable
– a problem which actor-critic methods resolve by additionally learning an actor, πθ , to
maximise the Q-function (Haarnoja et al., 2018a,b; Kumar et al., 2019; Lillicrap et al., 2015).
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Performing maxa′ Q̂(s′,a′) during training may lead to Q̂(s′,a′) being evaluated for an action
that does not appear in the training data, which can result in significant errors that propagate
through the Bellman bootstrapping, destabilising training on other states (Kumar et al., 2019;
Wu et al., 2021).

Fujimoto et al. (2018) demonstrate that standard off-policy deep RL algorithms DQN
(Mnih et al., 2013) and DPPG (Lillicrap et al., 2015) are unable to learn without data that is
correlated to the distribution induced by the current policy, and Kumar et al. (2019) make the
same observation for SAC (Haarnoja et al., 2018a,b).

The standard approach adopted in prior work is to try to directly limit the divergence
of the learned policy from the behavioural policy. BCQ (Fujimoto et al., 2018) attempt to
minimises the distance between the two distributions, while BEAR (Kumar et al., 2019)
relaxes the constraint by only requiring that the actions output by the learned policy lie within
the support of the training distribution. UWAC (Wu et al., 2021) highlights that state-action
pairs not present in the training data can still lie within the training distribution, and so use a
form of uncertainty quantification to avoid areas of the state-action space where there is high
uncertainty while allowing more exploration. Although such approaches reduce the potential
for distributional shift, by preventing areas of the state-action space from being visited we
also preclude the identification of optimal policies.

2.1.5 Existing Offline MBRL Approaches

The model-free algorithms described in the previous section are constrained to learn using
only the states and actions in the collected dataset. Because this dataset is static, there is
no possibility of spurious predictions being corrected through the collection of further data.
Model-based methods present an opportunity to rectify this, however will only be beneficial
if they limit the impact of distributional shift. In this space, a number of algorithms have
been proposed which, like UWAC, aim to develop an awareness of the uncertainty in the
predictions made by dynamics models and use this to guide the policy learning process.

PILCO (Deisenroth et al., 2015) learns a probabilistic dynamics model using Gaussian
processes to allow the model’s uncertainty to be expressed and incorporated into planning
and policy evaluation. Errors introduced by the smoothness assumptions made about envi-
ronments’ dynamics (inherent to standard GP kernels) can be alleviated through the learning
of suitable data representations (Calandra et al., 2014). However, GP methods struggle to
scale to high dimensional state spaces (Chua et al., 2018).

In their algorithm PETS, Chua et al. (2018) model the transition function using an ensem-
ble of neural networks whose outputs parameterise a multivariate Gaussian distribution with
diagonal covariance matrix: T̂ i

θ ,φ (st+1|st ,a) =N (µθ (s,a),Σφ (s,a)). PETS uses planning to



10 Background

learn an optimal sequence of actions, rather than training a policy. Further, it periodically
retrains the dynamics models using freshly collected data, making it an online approach.
MBOP (Argenson and Dulac-Arnold, 2020) extends PETS into an offline method by remov-
ing interactions with the environment and learning a model of the behaviour policy to guide
the action sampling process, in an attempt to avoid large distributional shifts.

The dynamics model training process from PETS is further used in the online method
MBPO (Janner et al., 2019) to train policies. Yu et al. (2020) subsequently adapted MBPO
into the offline method MOPO. As the SOTA offline MBRL algorithm used as the basis for
our work, we take time below to discuss MOPO in more detail.

Other offline MBRL methods include MOReL (Kidambi et al., 2020), COMBO (Yu et al.,
2021), BREMEN (Matsushima et al., 2020) and MABE (Cang et al., 2021). While MOReL
continues to use uncertainty quantification, the authors of COMBO (Yu et al., 2021) highlight
that this approach can be challenging and unreliable when using deep neural networks
(Ovadia et al., 2019). They propose a method which combines the rollout generation process
from MOPO with the conservative value function estimation of CQL (Kumar et al., 2020).
Concretely, conservatism is achieved by down-weighting Q-values on state-action tuples
from the model rollouts and up-weighting those from the offline dataset. Although BREMEN
is frequently included in the category of model-based offline RL, the authors’ focus was
increasing the deployment efficiency of policy learning – that is, minimising the number of
times the policy interacts with the environment during training (Matsushima et al., 2020).
This can be reduced to zero to make it an offline method. The learned policy is biased towards
the data-collection policy by initialising it to an estimate of the behaviour policy learned via
behaviour cloning (BC) and conditioning learning on the KL divergence from the estimated
behaviour policy to be less than a user-specified maximum.

Model-Based Offline Policy Optimisation (MOPO)

Unlike PETS, MOPO does not assume the reward function is known, and so the ensemble of
N neural networks learned parameterise a multivariate Gaussian distribution, with diagonal
covariance matrix, over both the next state and reward, based on the current state and action
(Yu et al., 2020).

pi
θ ,φ (st+1,r|st ,a) =N (st+1,r; µ

i
θ (s,a),Σ

i
φ (s,a)) (2.5)

The policy being learned is used in conjunction with the trained models to generate short
rollouts, with the collected transitions stored in a replay buffer. Samples from the offline
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dataset and replay buffer are then used to update the policy with the SAC algorithm (Haarnoja
et al., 2018a,b).

Further, MOPO uses uncertainty quantification to estimate the risk associated with
leaving the support of the training data (Yu et al., 2020). The authors define the uncertainty
penalised reward given by Equation 2.6, where r̂(s,a) is the mean predicted reward output
by the ensemble, ||Σi

φ
(s,a)||F is the Frobenius norm of the diagonal matrix of standard

deviations predicted by member i of the ensemble, and λ is the MOPO penalty coefficient, a
user-specified hyperparameter. The authors state they use the maximum norm to be more
conservative (Yu et al., 2020).

r̃(s,a) = r̂(s,a)−λ max
i=1,...,N

||Σi
φ (s,a)||F (2.6)

Therefore, if any of the models predict high variance for a given (s,a) tuple, the predicted
reward will receive a large penalty, and so the policy will likely learn to avoid taking the
given action in the given state. The updated reward yields the uncertainty-penalised MDP
M̃= (S,A, T̂ , r̃,ρ0,γ), under which the authors show that their method maximises a lower
bound on the return of the true MDP (although the use of the maximum predicted standard
deviation as the uncertainty penalty was empirically justified) (Yu et al., 2020).

2.1.6 Summary

Policy-induced distributional shift is a significant challenge in offline RL. The previous works
we’ve identified attempt to limit its impact by directly or indirectly guiding the learning
policy to either not deviate from the behavioural policy or to avoid certain areas of the
state-action space. These approaches therefore constrain exploration, which may prevent
the learning of optimal policies if the method is either overly-conservative or erroneously
prevents exploration in areas where the model error is actually low. In our work we instead
propose an approach that attempts to be robust to distributional shift by improving the domain
generalisation performance of the trained dynamics models.

2.2 Domain Generalisation

Distributional shift is not an issue unique to RL. In traditional supervised learning it is
common for the iid – independent and identically distributed – assumption to be made
(Bishop, 2006). That is, it is assumed that both the training and test data have been drawn
from the same distribution. However, when models are presented with truly novel data they
often suffer a deterioration in performance caused by distributional shift (Beery et al., 2018;
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Gururangan et al., 2018; Subbaswamy et al., 2019). Concretely, there is often a gap between
the domain that the data used the train and test the model was drawn from, and the ones it
encounters when deployed. For example, if we have inputs, or covariates, X and targets Y ,
two forms of distributional shift that can occur between domains are: shifts in the distribution
of P(X), or covariate shift; and changes in P(Y |X), or concept shift (Moreno-Torres et al.,
2012). We cannot reasonably expect to collect data from all possible domains to train our
model, and so instead may look to improve the ability of the model generalise to unseen
domains.

2.2.1 Empirical Risk Minimisation

We first describe Empirical Risk Minimisation (ERM): the standard training approach taken
in supervised learning, and baseline against which domain generalisation methods can be
compared (Shen et al., 2021; Vapnik, 1991). Consider an input space X , output space Y , a
fixed loss function ℓ and a model family Θ. Further assume that we have a dataset, De, of
training data drawn from domain e with distribution Pe(X ,Y ) over the inputs and outputs:
(xe,ye)∼ Pe(X ,Y ). Using model θ ∈Θ, the training risk for domain e is given by Equation
2.7.

Re(θ) = E(xe,ye)∼Pe(X ,Y )[ℓ( fθ (xe),ye)] (2.7)

The typical goal in supervised learning is to identify θ ∗ ∈Θ which minimises the training
risk. In ERM, we minimises the average loss over the training dataset (Vapnik, 1991).

θ
∗
ERM := argmin

θ
E(xe,ye)∼De [ℓ( fθ (xe),ye)] (2.8)

Consider now that we have a set of N training domains E ∈ {e1, . . . ,eN} ⊂ F , from each
of which a training dataset, De, has been collected. Each domain is assumed to posses a
different distribution over the inputs and outputs: Pe(X ,Y ) ̸= Pf (X ,Y )∀e, f ∈ E . The ERM
approach to learning θ ∗ ∈Θ would be to pool the training data together, D =

⋃N
e=1De, and

minimise the average loss across the training examples from all the domains (Arjovsky et al.,
2019).

However, this approach leads models to learn all correlations present in the training
data, including those that are spurious – misleading heuristics which do not hold generally
(Arjovsky et al., 2019; Sagawa et al., 2019). Arjovsky et al. (2019) highlight that by pooling
data from different domains we discard the information about how the data distribution
changes when the data source or collection specifics are varied; information that could tell us
whether a feature in the data is spurious or stable.
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2.2.2 Domain Generalisation Goal

The goal in domain generalisation is to learn the model θ ∗DG ∈Θ which minimises the risk on
an unseen set of target domains T ∈ {t1, . . . , tT} ⊂ F ,T ̸⊂ E , where Pt(X ,Y ) ̸= Pe(X ,Y )∀t ∈
T ,e ∈ E .

θ
∗
DG := argmin

θ
Et∼T

[
E(xt ,yt)∼Pt(X ,Y )[ℓ( fθ (xt),yt)]

]
(2.9)

Wang et al. (2021) give the illustrative example of a training set comprising images of
dogs, but where each image may be a sketch, cartoon, art painting or photo. If we were
to train a classification model using the first three of these, the model would exhibit good
domain generalisation performance if it achieves minimal prediction error on photos of dogs.

2.2.3 Domain Generalisation Techniques

There is a wealth of literature on methods that aim to increase the robustness of trained
models to distributional shift; interested readers are referred to the recent surveys produced
by Wang et al. (2021), Shen et al. (2021) and Zhou et al. (2021). Wang et al. (2021) propose
the following taxonomy, which categorises methods into the the following three groups:

• Data manipulation: Methods which employ either data augmentation or data genera-
tion to promote the learning of general representations.

• Representation learning: Methods for feature disentanglement or learning domain-
invariant representations/predictors.

• Learning strategy: A wide category, including methods for performing distribution-
ally robust optimisation.

Each of these categories contains methods that could be applied to the learning of
dynamics models in offline MBRL. In our work, we use the Risk Extrapolation (REx)
method (Krueger et al., 2020), which falls across distributionally robust optimisation and
domain-invariant prediction categories (Wang et al., 2021).

Distributionally Robust Optimisation

The goal of distributionally robust optimisation (DRO) (Ben-Tal et al., 2013; Duchi et al.,
2020) is to minimise the worst case risk over an uncertainty set of possible target domains,
T̃ .
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θ
∗
DRO := argmin

θ

[
sup
t∼T̃

[
E(x,y)∼t [ℓ( fθ (x),y)]

]]
(2.10)

In Group DRO, Sagawa et al. (2019) propose minimising the worst case risk over groups
in the training data, which is mathematically equivalent to considering convex combinations
of the training risks (Krueger et al., 2020). While Sagawa et al. (2019) focus on users having
prior knowledge about how best to group the training data, in our work we have assumed
training data has been collected from the set of domains E . Given it makes no assumptions
about the types of shift that may occur, Group DRO can provide robustness to both covariate
shift and concept shift.

Domain-Invariant Prediction

As it is most relatable to REx, we focus our analysis of domain-invariant prediction tech-
niques on Invariant Risk Minimisation (IRM) (Arjovsky et al., 2019), which looks to learn
correlations in the data that are invariant across domains, F . IRM derives from causal
inference methods, where it is assumed that an invariant relationship exists between the target
variable and it’s direct causes – readers are referred to the works of Peters et al. (2015, 2017)
and Bühlmann (2018) for further background.

IRM considers a data representation Φ : X →H to elicit a domain-invariant predictor
w ·Φ if there exists a classifier w :H→Y that is simultaneously optimal for all domains,
F (Arjovsky et al., 2019). That is, the same classifier w is used across domains, and IRM
looks to identify a representation Φ that both: enables good predictions to be made, and
elicits an invariant predictor across domains. In its practical implementation, a scalar, fixed
"dummy" classifier of w = 1 is used such that Φ becomes the entire invariant predictor. A
term is included in the loss function to encourage the predictor 1 ·Φ(x) to be optimal across
all training domains (Arjovsky et al., 2019).

One issue with IRM is that if there is only covariate shift (i.e., only P(X) varies across
domains), then Φ(x) = x is already suitable data representation for invariant prediction, given
P(Y|X) does not change. Thus, IRM is not expected to be robust to covariate shifts.

Risk Extrapolation (REx)

Risk Extrapolation (REx) (Krueger et al., 2020) seeks to improve domain generalisation
performance by enforcing the equality of risks across training domains. As shown by Figure
2.2, encouraging equality of the training risks flattens what Krueger et al. (2020) refer to as
the "risk plane" – the affine span of training risks. We can consider this affine span on the
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Fig. 2.2 When applying REx we expect to decreases the risks across training domains whilst
also increasing their similarity, which may lead to an increased risk for certain domains. The
goal of ERM is to reduce average risk, resulting in a decrease in risk for those domains that
most directly enable this goal (Duchi et al., 2020)

.

training domains to contain theoretical domains representing distributional shifts that may be
more extreme than those encountered in the training data (Krueger et al., 2020). Therefore, if
training losses were equalised, it is hoped that the loss on any domain encountered in reality
would be approximately equal to the loss on training domains.

The Minimax-REx (MM-REx) method, Equation 2.11, can be thought of as an extension
of Group DRO to affine combinations of the training risks (Krueger et al., 2020). Hyperpa-
rameter λmin controls the amount of extrapolation.

RMM-REx = (1−Nλmin)max
e
Re(θ)+λmin

N

∑
e=1
Re(θ) (2.11)

In practice, Krueger et al. (2020) found that V-REx, Equation 2.12, offered better perfor-
mance, and so this variant was used in our work. When β = 0, and if all datasets contain an
equal number of examples, we effectively recover ERM, although we now have the sum of
losses.

RV-REx = βVar({R1(θ), . . . ,RN(θ)})+
N

∑
e=1
Re(θ) (2.12)

Krueger et al. (2020) show that REx can uncover invariant relationships between inputs
X and targets Y , and that it optimises for robustness to the forms of distributional shift which
have the largest impact on performance across a collection of training domains. The authors
further highlight the inability of REx to distinguish between underfitting in a training domain
(i.e., epistemic uncertainty) and inherent noise (aleatoric uncertainty), which can encourage
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the model being trained to make equally bad predictions everywhere, even if the noise in
certain domains is lower than in others. IRM therefore has an advantage in settings where
some domains are intrinsically harder than others. However, unlike IRM, REx is better able
to solve invariant prediction tasks where covariate shift occurs Krueger et al. (2020).

2.2.4 Summary

While many different domain-generalisation techniques could be applied to dynamics model
training, the robustness of REx to multiple forms of distributional shift make it a strong
candidate for our investigations. We expect to see the flattening of the "risk plane" shown
in Figure 2.2 when evaluating models on out-of-distribution domains, and anticipate that
this increased robustness to distributional shift will be beneficial for learning policies in the
offline MBRL setting.

In the next chapter, we introduce and discuss our experiment pipeline.



Chapter 3

Experiment Pipeline and Overview

In this chapter we introduce the experiment pipeline created for this work, and provide a
roadmap to our experiments. Important notation and terminology will be defined and used
consistently in subsequent Chapters. We discuss the environment and task that are used
across all experiments, and provide baseline results for MOPO – the offline model-based RL
algorithm used as the foundation of this work.

3.1 Environment and Task

All experiments in this work use OpenAI Gym’s MuJoCo HalfCheetah. OpenAI Gym
presents a standardised API and wide range of environments for training and evaluating RL
algorithms (Brockman et al., 2016). This includes a set of environments implemented with
MuJoCo: a physics engine for simulating the interaction of articulated structures within
an environment (Todorov et al., 2012). MuJoCo environments are used extensively in RL
research and benchmarks (Fu et al., 2020; Gulcehre et al., 2020). The HalfCheetah, shown
in Figure 3.1, is a 2-dimensional robot comprising 9 links and 8 joints. The standard goal
of this task, as used in our work, is to apply torques on the joints to make the cheetah run
forward as fast as possible, while minimising the magnitude of the actions taken. The 17
dimension continuous, unbounded observation space includes the position and velocities of
the individual parts of the cheetah, while the 8 dimension continuous action space consists
of the torques applied to each joint, bounded in the range [-1,1]. Readers are directed to
OpenAI’s documentation for further information1.

1OpenAI Gym HalfCheetah: https://www.gymlibrary.ml/environments/mujoco/half_cheetah

https://www.gymlibrary.ml/environments/mujoco/half_cheetah
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Fig. 3.1 An OpenAI Gym MuJoCo HalfCheetah running forwards.

3.2 Experiment Pipeline

Our experiment pipeline, illustrated in Figure 3.2, has been divided into three sections,
aligned with the organisation of this thesis. There are a number of interacting components,
and so an overview is provided here that can easily be referred back to.

3.2.1 Demonstration Dataset Generation

Initially, a selection of demonstrator policies, πe, are trained using online RL algorithms.
The sole purpose of these policies is to generate individual demonstrator datasets, De, to
proxy for those generated by real life demonstrators (whether humans, or pre-existing control
policies). The term steps will be used to refer to the amount of online training a demonstrator
received. To increase data diversity, additional demonstrator datasets are created using a
random policy, πN . Each dataset comprises Ne transition tuples of the form: (se,ae,s′e,re,e).
The unique demonstrator identifier e is used during the training of dynamics models with
Risk Extrapolation (REx) to identify individual domains. The identifier is simply a number,
and provides no information about the demonstrator. Independently sampled evaluation
datasets are also created for each demonstrator. The term transitions will be used to refer
to the size of the demonstration dataset – for example, "demonstration dataset X with 1M
transitions was used in training." Collections of M individual datasets are combined to
produce multi-demonstrator datasets: DE = {(se

i ,a
e
i ,s
′e
i ,r

e
i ,e)

Ne
i=1}M

e=1.

3.2.2 Dynamics Model Training and Evaluation

Dynamics models pθ ,φ (st+1,rt |st ,at) are trained using both individual demonstrator datasets,
De, and multi-demonstrator datasets DE . The outputs of the models parameterise a Gaussian
distribution with diagonal covariance matrix: N (st+1,rt ; µ i

θ
(s,a),Σi

φ
(s,a)). The MOPO

algorithm (Yu et al., 2020), outlined in Algorithm 1, was chosen as the starting point for our
work2, as this allowed the impact of applying domain generalisation techniques in dynamics

2https://github.com/tianheyu927/mopo

https://github.com/tianheyu927/mopo
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Fig. 3.2 The experiment pipeline implemented for this work. Blue globes represent the real
world, while green globes indicate a learned model of the world: pθ ,φ (st+1,rt |st ,at). Trained
demonstrator policies are denoted by πe, random policies by πN , and policies learned offline
by πoff. The lower half of the diagram contains two parallel tracks: one relating to the use of
individual demonstrator policies, and another concerning multi-demonstrator policies.
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model training to be directly assessed against an existing SOTA algorithm. Further details of
the dynamics model training procedure will be provided in Chapter 5.

Algorithm 1 MOPO - adapted from (Yu et al., 2020) to include REx

Require: : reward penalty coefficient λ , rollout length h, rollout batch size b, REx penalty
coefficient β

1: Train on batch data Denv an ensemble of N probabilistic dynamics models
{pθ ,φ (st+1,rt |st ,at) =N (µ i

θ
(s,a),Σi

φ
(s,a))}N

i=1 with REx penalty coefficient β

2: Initialise policy πoff and empty replay buffer Dmodel←∅
3: for epoch 1,2, . . . do
4: for 1,2, . . . ,b (in parallel) do
5: Sample state s1 from Denv for the initialisation of the rollout
6: for j = 1,2, . . . ,h do
7: Sample an action a j ∼ π(s j)
8: Randomly pick dynamics T̂ from {T̂ i}N

i=1 and sample s j+1,r j ∼ T̂ (s j,a j)
9: Compute r̃ j = r j−λ maxN

i=1 ||Σi
φ
(s j,a j)||F

10: Add sample (s j,a j, r̃ j,s j+1) to Dmodel

11: Drawing samples from Denv
⋃
Dmodel, use SAC to update πoff

The performance of trained dynamics models is assessed against the evaluation datasets
created earlier, as well as the D4RL benchmark datasets (discussed in Section 4.2). We
evaluate the impact of training demonstrator(s) and model hyperparameters on domain-
generalisation performance. Average mean squared errors (MSEs) and log-likelihoods are
calculated for both in-distribution evaluation datasets (i.e., those drawn from the demonstra-
tor(s) used to train the model) and out-of-distribution datasets (all other demonstrators, plus
the D4RL datasets).

3.2.3 Offline Model-Based Policy Training and Evaluation

As shown in Algorithm 1, policies are trained using the SAC algorithm (Haarnoja et al.,
2018a,b). The required inputs are a dynamics model and a pool of collected transitions, Denv,
which is not required to be the same dataset used to train the dynamics model. The model
and learning policy are used to generate short rollouts of length h from starting locations
drawn from Denv once per epoch, and the experience collected stored in a model replay
buffer, Dmodel.

To assess whether the application of REx to dynamics model training has yielded sufficient
domain generalisation performance to enable increased exploration, experiments are run
where both: the rollout length h is increased from the maximum of 5 used in MOPO, and a
variety of different starting locations are provided. Gradient updates are performed using a



21 Experiment Pipeline and Overview

combination of records from Dmodel and Denv, with 95 % drawn from the former. At the end
of each epoch the current policy is evaluated in the real environment.

MOPO Reward Penalty

As a reminder from Section 2.1.5, MOPO uses the uncertainty-penalised reward given by
Equation 3.1, where λ is the user-specified MOPO penalty coefficient (Yu et al., 2020). To
analyse whether continuing to incorporate the MOPO penalty was beneficial when using
dynamics models trained with REx, policies were typically trained for λ ∈ {1,5} (those
primarily investigated in the original MOPO paper) as well as λ = 0.

r̃(s,a) = r̂(s,a)−λ max
i=1,...,N

||Σi
φ (s,a)||F (3.1)

Policy Evaluation

Once a policy, πoff, has been trained offline we can use the MDP, M̃, induced by a given
transition distribution, T̃ (s′|s,a), and reward function, r̃(s,a), to estimate the expected return
of the policy, J(πoff,M̃) (see Section 2.1.1). The transition distribution and reward function
could be those from the real environment (in which case we’d be using the true MDP,M), or
we could employ any of the models we have trained. We use the initial state distribution of
the real environment in all cases, although in a strictly offline setting one would need to be
derived using the static dataset or prior knowledge. We obtain an empirical estimate of the
expected return by using πoff, T̃ (s′|s,a) and r̃(s,a) to generate episodes and take an average
of the returns.

We evaluate each set of learned policies through a number of lenses to extract maximal
information about the presence and impact of domain-dependencies.

• Initially, the returns of the policies in the real environment are considered. Dynamics
models that are robust to distributional shifts should support increased exploration, and
so yield policies with higher returns. This will be influenced by the choice of dataset
that rollout starting locations are sampled from in policy training, hence we will run
experiments where the same dataset is used for all policies.

• The prevalence of model exploitation (discussed in Section 2.1.4) is determined by
evaluating policies against the dynamics model and reward function that were used
to train them. When compared to the return obtained in the real environment, this
self-evaluation return will be artificially inflated if the policy has exploited errors made
by the models.



22 Experiment Pipeline and Overview

• Finally, if all learned dynamics models and reward functions made perfect (or at
least identical) predictions across the entire state-action space then they would induce
matching MDPs, and so would all yield the same expected return for a given policy.
We evaluate policies across a range of models and use the disagreement between the
expected returns as an indicator of domain-dependence.

We anticipate that the increased robustness of models trained with REx should reduce
model exploitation and improve the agreement in the predicted returns for policies.

3.3 Baseline MOPO Results

To ensure reproducibility and provide a baseline for our work, experiments using the D4RL
HalfCheetah datasets (Fu et al., 2020) were repeated both before and after modifying MOPO,
using the same hyperparameters as the original paper (provided in Appendix A.1). In terms
of our experiment pipeline, Figure 3.2, this is equivalent to each of the D4RL datasets being
an individual demonstrator dataset, which are fed into the dynamics model training and
offline model-based policy training components. The post-modification results are shown in
Figure 3.3 and Table 3.1. Results are quoted using the metric proposed by Fu et al. (2020),
which normalises the undiscounted average evaluation returns during the final iteration of
policy training to lie roughly between 0 and 100 (see Appendix A.2). The reproduced results
are in good alignment with those provided in the paper.

When compared to a range of SOTA algorithms, MOPO outperforms model-free methods
and MBPO on all but the medium dataset. Yu et al. (2020) hypothesise that this is due to
a lack of action diversity in the dataset, and that model-free methods are more suitable in
such scenarios. Most of the D4RL datasets contain one million transition records, however
the medium-replay dataset, which provided the second highest average return, contains 101
thousand records, highlighting the content of the dataset can be more important than its size.

3.4 Conclusion

By providing a holistic overview of the experiment pipeline and evaluations conducted we
hope to have made the content of, and relationships between, the remaining chapters clear. In
the next chapter we train individual demonstrators, and combine these into multi-demonstrator
datasets.
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Fig. 3.3 Baseline MOPO runs against D4RL datasets (Fu et al., 2020). The mean and standard
deviation over six random seeds are shown.

D4RL Dataset Type Original Paper Reproduction
Normalised Score Normalised Score Raw Returns

Random 35.4 ± 2.5 33.9 ± 3.2 3903 ± 316
Medium 42.3 ± 1.6 46.5 ± 0.8 5489 ± 100
Medium-Replay 53.1 ± 2.0 54.8 ± 1.9 6527 ± 230
Medium-Expert 63.3 ± 38.0 75.0 ± 27.5 9030 ± 3411

Table 3.1 Baseline MOPO runs against D4RL datasets (Fu et al., 2020). The mean and
standard deviation of the normalised score over six random seeds are shown, along with the
raw returns obtained when reproducing the results.



Chapter 4

Demonstrator Dataset Creation

It was necessary for us to obtain or generate suitable data to proxy for real-world demonstra-
tion datasets. We therefore define a set of data requirements, and evaluate popular offline
RL benchmarks against these. We found no benchmark that met our requirements, and so
we produce our own set of demonstration policies using online RL algorithms. From these,
individual demonstrator and multi-demonstrator datasets are created.

4.1 Data Requirements

We define the following set of data requirements for our work:

• Unmodified HalfCheetah Environment: Data must have been collected in the
HalfCheetah environment (Brockman et al., 2016), without any modifications to the
original MDP. While changes in the dynamics and initial state distribution represent
interesting sources of diversity that are likely to arise in the real world (e.g., changes in
weather conditions when collecting driver data), in our work we seek to limit variation
solely to changes in the policies used to collect the data.

• Diversity: The data must capture a broad range of experience levels and modes of
behaviour. Drawing an analogy with human demonstrators for training autonomous
driving agents, different levels of experience could be obtained by collecting data from
learners, regular drivers, and those with advanced driving qualifications. To capture
different modes of behaviour, we would collect data from multiple individuals within
each of these groups, given that each demonstrator will exhibit unique behaviours.

• Identifiability: The source of the data must be known. While this information is not
used when training dynamics models, it is needed to assess the impact of the inclusion
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or emission of each source. For example, we may wish to determine if a policy with
the performance of an advanced driver can be learned using a dynamics model that
was trained with only data collected from learner drivers.

• Granularity: To enable granular control over the types of data included in multi-
demonstrator datasets, rollouts collected using specific policy snapshots are preferred
over data collected throughout training. This is analogous to collecting a new dataset
from a learner driver each lesson, rather than recording a single dataset spanning
several months of lessons. The former can be combined into the latter when desired.

• Randomness: The option to include data from a random policy should also be present,
allowing the impact of its presence or absence to be evaluated. Given that the OpenAI
gym has pre-defined random policies, benchmarks were not required to provide this.

If no individual benchmark met all of the above requirements then we would have been
happy to combine several.

4.2 Benchmark Review

Using our defined data requirements, we assess the suitability of popular RL benchmarks for
use in this work. Only those which include the HalfCheetah task are discussed.

• D4RL (Fu et al., 2020): D4RL offers 5 HalfCheetah datasets (see Appendix A.3 for
full descriptions), three of which were generated from individual policies: random,
medium, and expert. These could be used, however do not collectively provide the
desired diversity, and so would need to be combined with other datasets. Additionally,
a dataset comprising the replay buffer of an agent trained to medium level, medium-
replay, and one which combines medium and expert data, medium-expert, are provided.
While the medium-replay dataset violates the requirement for granularity, medium-
expert does not meet the identifiability condition.

• RL Unplugged (Gulcehre et al., 2020): This benchmark includes datasets collected
during the training of three independent D4PG agents (Barth-Maron et al., 2018), and
thus represents a collection of replay buffers. These therefore do not meet the granu-
larity requirement. Further, given the datasets come from the same implementation of
an online RL algorithm, they’re likely to exhibit similar modes of behaviour, and so do
not offer the diversity desired.
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• DOPE (Fu et al., 2021): Rather than individual datasets, the Deep Off-Policy Evalua-
tion (DOPE) benchmark provides 11 snapshoted policies collected during the training
of a SAC agent in the MuJoCo HalfCheetah environment. However, these appear to
have been generated during the training of a single policy, and so may again not present
significant diversity.

While rollouts using the snapshoted DOPE policies could have been generated and used
alongside the D4RL random, medium and expert datasets, this still did not represent a signifi-
cant diversity of data. We therefore decided to train a custom collection of demonstrator
policies.

Given that Yu et al. (2020) benchmark the performance of MOPO against the D4RL
datasets, these were still used when evaluating the domain generalisation capabilities of
learned dynamics models.

4.3 Demonstrator Generation

We use two different implementations of the SAC algorithm to create demonstrators: Soft-
learning, the official SAC implementation (Haarnoja et al., 2018a,b); and D3RLPY, which
implements a version of SAC with delayed policy updates (Seno and Imai, 2021). Policies
were trained using the default hyperparameters provided in their respective repositories.

Snapshots of each policy were taken at regular intervals during training, as summarised
in Table 4.11 and Figure 4.1. The performance of the Softlearning agents is aligned with
the original SAC paper, whereas the D3RLPY results are lower than anticipated. Visual
inspection of rollouts generated using D3RLPY policies showed that the expected task was
being performed (i.e. the HalfCheetah was running forward), and so we did not reject these
policies. The use of two different SAC implementations increased the diversity of the data,
as we desired.

4.4 Demonstrator Dataset Generation

Using the demonstrator policies trained in the previous section, we created demonstration
datasets consisting of 100 and 1000 episodes of 1000 steps each (the standard length of
the HalfCheetah task), resulting in datasets with either 100,000 (0.1M) or 1,000,000 (1M)
transition records. The selection of datasets produced allowed the impact of both demonstrator

1D3RLPY agents were not trained for 3 million steps due to memory issues experienced on the HPC, even
when using high-memory nodes.
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Training Time Steps (million) Softlearning Policies D3RLPY Policies
0.1 5647 ± 74 3789 ± 187
0.2 - 5172 ± 93
0.25 7387 ± 332 -
0.5 8981 ± 435 7298 ± 635
1 10534 ± 366 8691 ± 1108
2 13834 ± 1087 9710 ± 1193
3 14718 ± 545 -

Table 4.1 Mean evaluation return ± one standard deviation over three policies trained using
Softlearning (Haarnoja et al., 2018a,b) and D3RLPY (Seno and Imai, 2021) SAC implemen-
tations.

Fig. 4.1 Overview of the demonstrators created, and the process of generating individual
demonstration datasets from these. One random demonstrator is used to create multiple
random datasets.

experience (i.e., number of online training steps received) and data quantity on domain-
generalisation performance and policy training to be evaluated. Figure 4.1 provides a visual
representation of the generation process. Evaluation datasets consisting of 100 episodes
were also independently generated for each policy. Finally, three 100 episode datasets were
generated using a random policy.
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4.5 Multi-Demonstrator Dataset Generation

We additionally use the trained demonstrators to create two-multi-demonstrator datasets,
which we call Novice and Mixed. Each dataset contains a total of 0.1M transitions, with
20,000 records contributed by each of the five individual demonstrators shown in Table 4.2.
Figure 4.2 illustrates the generation process followed for each dataset. Demonstrators were
chosen based on the goal of each dataset:

1. Novice: We looked to answer the question: starting from a largely random training
dataset with only limited examples of good behaviour, could dynamics models support
the learning of a policy with returns exceeding those of the demonstrators used to create
the training dataset? To achieve this, the learning policy will need to explore areas
of the state-action space not captured by the training data, which dynamics models
with good domain-generalisation performance are more likely to enable. Further, to
reach high reward areas of the state-action space, exploration is likely to result in dis-
tributional shifts that are more extreme than those observed in training – allowing us to
evaluate the extrapolation capabilities of REx. We exclude Softlearning demonstrators
from this dataset so that we can evaluate how well models generalise to this class of
demonstrators. In total, 40 % of the total transitions were generated using the D3RLPY
0.1M step demonstrator – 20 episodes of 1000 steps (i.e., complete episodes) and 100
episodes of 200 steps (i.e., the time during which the HalfCheetah is accelerating). A
further 20 % of transitions were obtained from an agent trained for 20,000 steps. The
remaining 40 % of the data is from a random policy.

2. Mixed: In contrast to the Novice dataset, the purpose of this dataset was to evaluate
the benefits REx could bring to a highly diverse dataset with many examples of good
behaviour. Two D3RLPY and two Softlearning demonstrators were used; in each
case one of these had been trained for a limited number of steps, while the other had
been trained for significantly more. Data was additionally generated from a random
demonstrator to further increase diversity.

Compared to individual demonstrator policies, both of the above datasets decrease the
amount of training data drawn from individual demonstrators, while increasing the diversity
of starting locations for rollouts generated during policy training.
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Novice Dataset Mixed Dataset
Demonstrator Episodes Steps per Episode Demonstrator Episodes Steps per Episode

Random 20 1000
Random 20 1000

D3RLPY 0.2M 20 1000
D3RLPY 0.02M 20 1000 D3RLPY 2M 20 1000
D3RLPY 0.1M 20 1000 SAC 0.1M 20 1000
D3RLPY 0.1M 100 200 SAC 1M 20 1000

Table 4.2 The demonstrators used to generate the Novice and Mixed datasets, including the
number of episodes contributed to the dataset and the steps per episode.

Fig. 4.2 The demonstrators used to create the Novice and Mixed datasets, and the process
followed to generate demonstration datasets from these.

4.6 Conclusion

In this chapter, we defined a set of data requirements for our work, and, having identified no
existing benchmarks which fulfil the criteria, created demonstrators from which individual-
and multi-demonstrator datasets have been generated.

Ideally a wider variety of online RL algorithms – such as DQN (Mnih et al., 2013),
DDPG (Lillicrap et al., 2015) and PPO (Schulman et al., 2017) – would have been used to
train demonstrators. We attempted to use the RLlib (Liang et al., 2017) implementation of
PPO to train agents, however only a fraction of the evaluation return quoted by the library’s
authors was achieved when running training with the same hyperparameters. This is believed
to be an example of the reproduciblity crisis in RL (Gulcehre et al., 2020; Henderson et al.,
2017). Future work should look to make use of a more diverse range of datasets, and generate
a broader variety of multi-demonstrator datasets.

In the next chapter, we will use the datasets created here to train dynamics models and
assess their domain-generalisation performance.



Chapter 5

Dynamics Model Training and Evaluation

Having generated demonstrator datasets in the previous chapter, we now use these to train
dynamics models and analyse their domain-generalisation performance. As discussed in
Chapter 3, the MOPO codebase (Yu et al., 2020) was used as the foundation for this work.
We first provide an overview of the original dynamics model training procedure and loss
function, before detailing the modifications made to incorporate risk extrapolation (REx) into
training. Significant instability was observed during the REx phase of training – we discuss
the methods employed in an attempt to reduce this.

We initially evaluate models trained on individual demonstrator datasets, which we use
to illustrate the impact of distributional shift on model performance. We further evaluate the
impact that demonstrator experience (i.e., the number of steps used in online policy training)
and dataset size (the number of transition records) have on performance. We show that
models trained on multi-demonstrator datasets generally exhibit improved generalisation
capabilities, which are further enhanced by increasing the REx penalty coefficient applied
in training. We observe that, as discussed in Section 2.2.3, REx "flattens the risk plane," by
lowering risk (whether this be the log-likelihood or mean squared error) on certain out-of
distribution domains while increasing it for others.

5.1 MOPO Dynamics Model Training

As discussed in Section 2.1.5, MOPO (Yu et al., 2020) models the environment dynamics
and reward function using an ensemble of neural networks whose outputs parameterise a
multivariate Gaussian distribution (with diagonal covariance matrix) over the next state and
reward, conditioned on the current state and action.

pi
θ ,φ (st+1,r|st ,a) =N (st+1,r; µ

i
θ (s,a),Σ

i
φ (s,a)) (5.1)
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Models are composed of 4 hidden layers with 200 units each. Training is performed via
supervised learning, using mini-batch gradient descent with a batch size of 256 transition
records, which are sampled uniformly at random from a static dataset of collected transitions,
Denv. In our work, Denv is either an individual demonstrator’s dataset, De, or a multi-
demonstrator dataset, DE . A set of 1000 records are chosen at random to be used as an
evaluation dataset, with the remainder used for training. The loss function used when training
the dynamics models, Equation 5.2, can be expressed as the sum of three components:

1. Negative Log-Likelihood,Rnll: The first term is simply the negative log-likelihood
(excluding constants), where N denotes the number of records in Denv and D is the
dimensionality of each record. µd(xn) and σ2

d (xn) are the mean and variance of
dimension d predicted for record xn.

2. Weight Regularisation,Rwr: The second term corresponds to ℓ2 weight regularisation,
where L denotes the number of layers in the model, wl denotes the weights in layer l,
and νl is a weight decay term for layer l. νl values were not adjusted from those used
in the original implementation.

3. Variance Bounding, Rvb: Chua et al. (2018) highlight that outside of the training
distribution the predicted variance can assume arbitrary values, and can both collapse
to zero or explode to infinity (in contrast to models like GPs where variance values
are better behaved). The authors found that bounding the output variance such that
it cannot exceed the range seen in the training data was beneficial, and therefore
include the final two terms in the loss function, where σ2

max,d and σ2
min,d are the learned

maximum and minimum variance of dimension d respectively.

RMOPO =Rnll +Rwr +Rvb (5.2)

=
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The model’s variance predictions are updated to account for the learned bounds as
follows:
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At the end of each epoch, the mean squared errors (MSE) for both training and evaluation
datasets are calculated. Training terminates when the loss on the evaluation dataset does not
decrease by more than 1 % for any model in the ensemble for five consecutive epochs.

5.1.1 Single Demonstrator Training Performance

No modifications were made to the original MOPO loss function or termination condition
when training models on individual demonstrator datasets, except where explicitly high-
lighted. Figure 5.1 shows the evolution of the training and evaluation MSEs for models
trained against individual D3RLPY demonstrator 0.1M transition datasets. For each dataset,
we trained three sets of models independently with different random seeds. The results show
that the termination condition can lead to significant variability in training times. The impact
that training time has on domain generalisation performance will be shown.

Fig. 5.1 Training and evaluation MSEs during the training of dynamics models on D3RLPY
demonstrator 0.1M transition datasets. Colours denote the number of steps the demonstrator
was trained for. The mean and standard deviation over three seeds are shown. The MOPO
termination condition introduces variation in training times – red dots indicate when individ-
ual runs completed training.



33 Dynamics Model Training and Evaluation

Figure 5.2 shows that lower terminal training and validation losses were obtained when
using 1M transition datasets, even though the number of training epochs was approximately
the same as for the 0.1M transition datasets. To enable comparison of the impacts of dataset
size and training time on domain-generalisation performance, we trained an additional set
of models on the 0.1M transition datasets for four times the original number of epochs.
This allowed the losses to approach those of models trained on 1M transitions. Although
the validation losses typically remained significantly higher, there was no indication of
overfitting.

Fig. 5.2 Training and evaluation MSEs during dynamics model training on D3RLPY demon-
stration datasets containing 0.1M and 1M transitions. Colours denote the number of demon-
strator steps (S) and transition records (TR). When the MOPO termination condition was
reached, training on datasets containing 0.1M transitions was allowed to continuing until the
number of completed epochs had increased four-fold. The mean and standard deviation over
three seeds are shown. Red dots indicate when individual runs finished training, which can
cause the mean to suddenly shift.

5.2 Dynamics Model Training with REx

The multi-demonstrator datasets represent data collected from M demonstrators, DE =⋃M
e=1De. Individual negative log-likelihood values,Re

nll, are calculated for each demonstra-
tor’s data, De. These are then used to calculate the MOPO V-REx loss given by Equation 5.3,
where β is the REx penalty coefficient and τt is a learning rate decay term dependent on the
training epoch, t.
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RMOPO V-REx = τt

(
M

∑
e=1

[Re
nll]+β ·Var

(
R1

nll,R2
nll, . . . ,RM

nll
)
+Rwr +Rvb

)
(5.3)

Model training for multi-demonstrator datasets was split into two phases:

1. ERM: Hyperparameter values β = 0 and τt = 1 are used until the original MOPO
termination condition is reached. This is the training that was performed for individual
demonstration datasets.

2. REx: Training was then allowed to continue for a pre-defined multiple of the number
of epochs completed in the ERM phase (typically either 1 or 3), with β and τt now set
to user-specified values.

To assess the impact that varying the strength with which the equality of risks across
training domains is enforced had on both domain-generalisation performance and the training
of policies, models were trained against the Novice and Mixed datasets using REx penalty
coefficients β ∈ {0,0.1,1,5,10} .

5.2.1 Multi-Demonstrator Training Performance

Figure 5.3 plots the evolution of the individual loss terms in Equation 5.3 during the training
of models against the Mixed multi-demonstrator dataset. The REx phase of training was run
for an equal amount of time as the initial ERM phase, with τt = 1. While the training loss
decreases monotonically and smoothly during the ERM phase, the point at which the REx
phase begins is marked by significant instability in the sum and variance of demonstrator
losses. The inset in Figure 5.3b suggests that higher REx penalty coefficients may have
decreased the variance of training losses, however the noise precludes making definitive
statements. Figure 5.3d also shows that the use of higher REx penalty coefficients led to a
reduction in the variance bounding loss term,Rvb, and therefore a narrowing of the values
the predicted variance can take. This, in-turn, will limit the values that the MOPO penalty
can take, given that penalties are determined using the predicted variance (see Section 2.1.5).

Several attempts were made to increase the stability of training, such as: 1) setting the
learning rate decay term to τt = 10 during the REx phase of training, and 2) increasing the
mini-batch size five-fold in the hope that the empirical variance of the demonstrator losses
would approach the population value, and that this would be less variable. However, as shown
in Figure 5.4, these were not observed to offer a notable improvements. The runs using larger
mini-batch sizes were allowed to train for a roughly equal total number of batches as the
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(a) Sum of Demonstrator Losses (b) Variance of Demonstrator Losses

(c) Weight Regularisation Loss (d) Variance Bounding Loss

Fig. 5.3 Evolution of the individual MOPO V-REx loss terms (Equation 5.3) when training
models against the Mixed dataset. Colours denote the REx penalty coefficient used. The
mean and standard deviation over three seeds are shown. The early stopping criterion
introduces variation in training times – red dots indicate when individual runs completed
training.
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(a) Sum of Demonstrator Losses (b) Variance of Demonstrator Losses

Fig. 5.4 Sum and variance of demonstrator losses during the training of models against the
Mixed dataset with REx penalty coefficient β = 10. Colours denote modifications to the
training procedure. In the Learning Rate Decay run hyperparameter τt was set to 10 during
the REx phase of training, while in the Increased Batch Size run the batch size was increased
five-fold to 1,280. The Increased Batch Size run was allowed to train for an approximately
equal number of batches as the other runs, indicating a five-fold increase in the amount of
training received. The mean and standard deviation over three seeds are shown.

previous runs, and so effectively also received five times the amount of training. The sum of
demonstrator losses was not further reduced, nor was the variance of the losses.

5.3 Domain Generalisation Performance

We now use the dynamics models trained in the previous section to demonstrate the impact
of distributional shift on model performance. We analyse the influence of various model
training choices, the use of multi-demonstrator datasets, and the application of REx. As
discussed in Section 3.2.2, we determine the mean-squared errors (MSE) and log-likelihoods
for both in-distribution (ID) and out-of-distribution (OOD) evaluation datasets. While ID
datasets are those generated from the same demonstrators used to train the model, OOD
datasets comprise those generated from all other demonstrators, a random policy, and the
D4RL datasets.
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5.3.1 Individual Demonstrator Datasets

We initially demonstrate the domain-dependence exhibited by models trained against individ-
ual demonstrator datasets. Figure 5.5 shows the MSE and log-likelihood values for models
trained using D3RLPY demonstrator 0.1M transition datasets. It’s clear that the out-of-
distribution performance is highly dependent on both training and evaluation domains, with
the dataset type (e.g., Softlearning, D3RLPY, D4RL, Random) and number of demonstrator
steps both having significant influence. The inset figures magnify the evaluation results for
D3RLPY demonstrators and highlight that performance is highest in-distribution (i.e., when
the evaluation dataset matches the training dataset). Performance decreases as the difference
between the number of demonstrator steps in the training and evaluation datasets increases,
likely due to larger distributional shifts.

Looking across all evaluation datasets, models trained on 0.5M, 1M and 2M step demon-
strators appear to exhibit lower generalisation capabilities than those trained with 0.1M
and 0.2M steps. We hypothesise that demonstrators with extensive training will have more
deterministic policies, and so their datasets will contain a narrower distribution of behaviours.
Models trained on this data are therefore likely to have reduced generalisation capabilities.
The inability of model-based offline RL methods to exceed the performance of model-free
methods on datasets with limited diversity has been observed by many authors (Kidambi
et al., 2020; Rafailov et al., 2020; Yu et al., 2020), and so the reduced OOD performance is
anticipated to have a negative impact on policy training. This is evaluated in the Chapter 6.

In addition to those trained on 0.1M transitions, dynamics models had also earlier been
trained using 1M transitions for approximately the same number of epochs, and had been
observed to have lower training and evaluation losses. Figure 5.6 shows that the in-distribution
performance of these models improves, while the OOD performance deteriorates. The same
effect is seen for the models that had been trained for four times the original number of
epochs while holding the number of transition records constant at 0.1M. This indicates
overfitting to the training domain, which we predict will have a detrimental impact on policy
training. This is also evaluated in Chapter 6.

Table 5.1 shows the average and worst-case MSE and log-likelihood values obtained
across OOD datasets for all individual demonstrator models, including Softlearning demon-
strators. ID results are also included, which highlight the significant gap between ID and
average OOD performance. While OOD performance generally decreased with demonstrator
steps for D3RLPY demonstrators, the same level of consistency was not observed for Soft-
learning demonstrators. Looking at the average values for each demonstrator type, D3RLPY
demonstrators have both lower MSEs and log-likelihoods – the centre of their Gaussians are



38 Dynamics Model Training and Evaluation

(a) Log-Likelihood

(b) MSE

Fig. 5.5 Log-likelihood and MSE values for models trained with 0.1M transition D3RLPY
demonstration datasets, measured against a wide range of evaluation datasets. Colours
denote the number of steps the demonstrator was trained online for. The mean over three
independently trained models is shown, while the edges of the shaded regions convey the
minimum and maximum values. Softlearning is abbreviated to SL.

closer to the true value, but the variances are higher. We will compare these results against
those for models trained using multi-demonstrator datasets in the next section.
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(a) Training Dataset (b) OOD Datasets

Fig. 5.6 Log-likelihood values for models trained with D3RLPY demonstration datasets.
Colours indicate the number of transitions (TR) in the dataset, and the training procedure:
Norm. Training = the standard training procedure; Ext. Training = a four-fold increase in the
number of training epochs. The mean and standard deviation over all OOD datasets is shown
in Figure (b).

5.3.2 Multi-Demonstrator Datasets

In the previous section we showed that the domain-generalisation performance of models
trained on individual demonstrators was dependent on both the training and evaluation
domains. We now demonstrate that this dependence is generally reduced for models trained
on multi-demonstrator datasets, and that further improvements are gained by applying REx
during training.

The average and worst-case MSE and log-likelihood values for OOD datasets are shown
in Table 5.2. The results for models trained without REx (i.e., β = 0) are compared against
those for individual demonstrators, shown in Table 5.1. For the Novice dataset, the maximum
MSE values are lower than 66 % of Softlearning models and 60 % of D3RLPY models,
while minimum log-likelihoods are lower than 33 % of Softlearning models and the same 60
% of D3RLPY models. The improvements obtained across all OOD metrics using the Mixed
dataset were far more substantial – domain-generalisation performance was significantly
better than for any individual demonstrator model. We find the difference between the
datasets to be unsurprising: the Mixed dataset contains transitions from a more diverse
collection of demonstrators, so models trained against it would be expected to have higher
domain generalisation performance.
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Demonstrator MSE Log-Likelihood
Type Steps (M) ID OOD Avg OOD Max ID OOD Avg OOD Min

Softlearning 0.1 0.44 4.71 19.93 27 -519 -3424
Softlearning 0.25 0.14 477.94 1888.46 42 -55048 -199632
Softlearning 0.5 0.11 292.01 1177.09 39 -54414 -224586
Softlearning 1 0.20 3.35 18.53 36 -197 -1059
Softlearning 2 0.28 21.43 71.61 34 -1772 -6452
Softlearning 3 0.33 17.42 56.56 35 -1308 -4341

Average 0.25 136.14 538.70 36 -18876 -73249
D3RLPY 0.1 0.16 9.22 29.11 38 -3183 -20582
D3RLPY 0.2 0.14 11.36 42.98 40 -5384 -25543
D3RLPY 0.5 0.15 43.15 153.77 40 -26300 -193527
D3RLPY 1 0.25 29.54 104.4 38 -15209 -94565
D3RLPY 2 0.17 63.74 370.65 42 -103215 -714632

Average 0.17 31.40 140.18 40 -30658 -209770
Table 5.1 MSE and log-likelihood values for dynamics models trained using Softlearning
and D3RLPY demonstrators. Each model was assessed against data drawn from its training
distribution, and an average taken over data drawn from OOD datasets. Maximum MSE
and minimum log-likelihood values are also shown, along with average statistics for both
Softlearning and D3RLPY demonstrator types.

Demonstrator REx Penalty
Coefficient, β

MSE Log-Likelihood
ID OOD Avg OOD Max ID OOD Avg OOD Max

Novice 0 0.19 8.58 49.45 29 -4653 -47804
Novice 0.1 0.19 8.54 50.22 29 -3931 -37236
Novice 1.0 0.18 17.72 198.90 30 -3759 -32212
Novice 5.0 0.23 8.60 91.23 24 -2848 -38089
Novice 10.0 0.29 3.97 20.19 14 -432 -4660
Mixed 0 0.22 0.64 2.28 34 55 -183
Mixed 0.1 0.22 0.65 2.51 34 65 -222
Mixed 1.0 0.22 0.64 2.34 33 63 -214
Mixed 5.0 0.25 0.65 1.80 26 21 -55
Mixed 10.0 0.28 0.72 1.96 23 14 -28

Table 5.2 MSE and log-likelihood values for dynamics models trained using Novice and
Mixed demonstrators. Each model was assessed against data drawn from its training dis-
tribution, and an average taken over data drawn from OOD datasets. Maximum MSE and
minimum log-likelihood value are also shown.

As β was increased, ID performance decreased for both datasets: MSE values increased
and log-likelihoods decreased. The maximum OOD MSE was lower at β = 10 than β = 0 in
both cases, however there was significant variability in the region between these settings, and
the average OOD MSE increased slightly for the Mixed dataset.
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While there are outliers, the minimum OOD log-likelihood showed a positive correlation
with β for both datasets, as can be seen clearly in Figure 5.8. However, while the average
OOD log-likelihood for the Novice dataset also increased with β , for the Mixed dataset it
decreased. Figure 5.7 plots the individual log-likelihoods across the evaluation datasets. As
had been anticipated, it’s clear that the "risk plane" was flattened for β ∈ {5,10}. In the case
of the Novice dataset this led to a decrease in log-likelihood for some domains (as can be
seen from the inset in Figure 5.7b), however many domains saw a sizeable increase. This
includes all Softlearning domains, which had been excluded from the Novice dataset. For
the Mixed dataset the story is reversed: log-likelihoods decreased for most domains, and
so the average is reduced. However, the average and minimum values are still significantly
higher than for the Novice dataset.

There was concern that REx may achieve equality of risks by simply learning to predict
high variance regardless of the inputs to the model; thus making the predicted distributions
more uniform. Figure 5.9 shows that high REx penalty coefficients did result in more uniform
average predicted variances across the evaluation datasets, but this includes decreases for
many domains, rather than universal increases. REx effectively exhibits greater certainty
in domains with larger distributional shifts, at the expense of those domains with lowest
distributional shift.

5.4 Conclusions

In our experiments, we found that the domain generalisation performance of dynamics
models is highly dependent on the dataset used in training. We had expected that demon-
strators trained online for more steps may have produced datasets sampled from narrower
distributions, which might result in dynamics models with reduced domain generalisation
performance. While there was some evidence for this, it was not consistent across demon-
strator types. We found that OOD performance decreased when larger training datasets were
used, and when training time increased. We expect positive correlation between the OOD
performance of models and the return of policies trained with them – this is evaluated in the
next chapter.

We observed that the Novice multi-demonstrator dataset did not contain sufficient di-
versity to improve domain generalisation performance beyond that of all models trained
using individual demonstrators. However, REx penalty coefficients at the higher end of
those investigated (β ∈ {5,10}) were observed to improve average and worst-case OOD
metrics. While we showed that REx flattened the risk plane, for the Mixed dataset this
led to a reduction in the worst-case risk and an increase in the average risk. Although our
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belief is that increased domain generalisation performance should be beneficial to policy
training, whether improved average or improved worst-case performance is more favourable
was unknown. Experiments performed in the next chapter allow us to analyse this.
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(a) Novice Dataset

(b) Mixed Dataset

Fig. 5.7 Log-likelihood values for models trained against the Novice and Mixed datasets,
across a range of evaluation datasets. Colours denote the REx penalty coefficient used. The
inset figure in (a) shows the results for the D3RLPY evaluation datasets, given that the
D3RLPY 0.1M demonstrator was a contributor to the Novice dataset. The inset figure in (b)
shows the results for the evaluation datasets of the training demonstrators that contributed to
the Mixed dataset. Softlearning is abbreviated to SL
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(a) Novice MSE (b) Novice Log-Likelihood

(c) Mixed MSE (d) Mixed Log Likelihood

Fig. 5.8 Average and worst-case MSE and log-likelihood values across OOD evaluation
datasets for models trained with Novice and Mixed datasets using REx penalty coefficients
β ∈ {0,0.1,1,5,10}. The worst-case MSE value is the maximum obtained across the OOD
datasets, while the worst-case log-likelihood value is the minimum obtained across the OOD
datasets. The error bars on the average values represent the standard deviation over the
datasets.
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Fig. 5.9 Variance values predicted by dynamics models trained against the Novice dataset
across a range of evaluation datasets. The mean and standard deviation over three indepen-
dently trained models are shown. Colours denote the REx penalty coefficient used to train
the models.



Chapter 6

Policy Training and Evaluation

In this chapter, we use dynamics models trained against both individual demonstrator, De,
and multi-demonstrator, DE , datasets to learn and evaluate policies. Recalling from Section
3.2.3, policies are trained using the SAC algorithm (Haarnoja et al., 2018a,b). Rollouts are
generated by running the current iteration of the policy being learned against a supplied
dynamics model, with the collected experience used by SAC to update the policy. In an
attempt to limit distributional shift, previous works (Janner et al., 2019; Yu et al., 2020)
sample rollout starting locations from the same dataset used to train the dynamics model,
and use horizons of at most five steps. Further, MOPO (Yu et al., 2020) uses the uncertainty-
penalised reward given by Equation 6.1, where λ is the the user-specified MOPO penalty
coefficient, to deter the learning policy from visiting areas of the state-action space where
model uncertainty is high, as measured using the variance predictions of the model.

r̃(s,a) = r̂(s,a)−λ max
i=1,...,N

||Σi
φ (s,a)||F (6.1)

We first use dynamics models trained against individual demonstrator datasets to learn
policies, with the goal of establishing the impact that domain-generalisation performance
has on policy returns. This includes demonstrating that policies cannot be learned if rollout
starting locations are sampled from OOD datasets.

We then show that the improved domain generalisation performance of dynamics models
trained with risk extrapolation (REx) allows rollouts of more than five steps to be used in
training, yields policies with higher average returns, and increases the robustness of policy
training when sampling rollout starting locations from OOD datasets. While we expect REx
to reduce model prediction errors, we know that such errors will never be entirely eliminated,
and so we evaluate the impact that the MOPO penalty coefficient, λ , continues to play on
policy training.
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We analyse each set of trained policies with the goal of extracting maximal information
about the presence and impact of domain dependence. As outlined in Section 3.2.3, this
includes looking at the amount of model exploitation which occurs, and the agreement in
expected policy returns across learned models. We show that, as anticipated, improved
domain generalisation performance is beneficial, however we also observe that high MOPO
penalty coefficients are important for reducing model exploitation.

6.1 Individual Demonstrator Policies

6.1.1 Policy Training

When using dynamics models trained against individual demonstrator datasets to learn
policies, we observe that policy returns generally increase with the number of demonstrator
training steps up to a certain point, before dropping – often significantly. While policy returns
do not generally appear to be correlated with the OOD performance of the dynamics model
used in training, we do observe that returns increase when the number of transition records
used to train the dynamics models is increased. This was surprising, given we found in the
last chapter that these models have lower domain-generalisation performance.

Replicating the approach taken by the MOPO algorithm (Yu et al., 2020), rollout starting
locations were sampled from the same dataset used to train the dynamics model, and therefore
varied across experiments. We used a MOPO penalty coefficient of λ = 1 and rollout length
h = 5, as these were the most common hyperparameter settings for D4RL HalfCheetah
datasets in the MOPO paper (Yu et al., 2020). We observed that policy training generally
plateaued after 0.5M steps, and so all experiments were trained for this amount of time. The
policy evaluation returns obtained in the final epoch of training are summarised in Table 6.1,
and are compared with the OOD performance of the dynamics model they were trained with
in Figure 6.1. Experiments had additionally been run using λ = 0 to assess the impact of
discarding the MOPO penalties – this was observed to lower policy returns in almost all
cases (see Appendix B.1).

While the results appear to show a misalignment between domain generalisation perfor-
mance and the quality of the policies learned, other factors – such as not having tuned the
hyperparameters used in policy training for each experiment individually, and the variation
in rollout starting locations – will likely have had an impact.

Additionally, we consider where in the state-action space high model performance
might have been most critical for these experiments. While larger quantities of transition
records were found to be detrimental to average OOD performance, we know that in-
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Fig. 6.1 No correlation is observed between the OOD performance of dynamics models
and the average evaluation return of policies trained against it. Individual data point labels
indicate the number of demonstrator steps. Models were trained on 0.1M transition records.
OOD performance metrics were taken from Table 5.1.

distribution performance was improved. MBPO and MOPO use short rollouts from ID
starting locations in an explicit attempt to limit distributional shift, therefore improved
in-distribution performance may be beneficial for finding locally optimal policies. If this
were the case, it might be expected that we would be constrained towards finding policies
with similar returns as the demonstrator policy (see Table 4.1). However, there were many
instances where the returns of the policies trained offline exceeded those of the demonstrator
policy – such cases are bolded in Table 6.1.

To standardise the source of rollout starting locations and investigate the impact of
using OOD datasets, we re-ran policy training for the D3RLPY 1M transition dynamics
models with new starting locations. These were sampled from one of three datasets: D4RL
Mixed-Replay, and transitions from both a Softlearning and random policy. When using in-
distribution starting locations, all D3RLPY 1M transition dynamics models trained policies
with evaluation returns > 6000. However, the results in Table 6.2 show that no policies
with significantly positive evaluation returns could be learned using OOD starting locations,
and many did not complete 0.5M steps of training. Training stopped prematurely when the
policy model became degenerate and failed to make action predictions – which we discuss in
Section 6.2.3.
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Demonstrator
Steps (M)

Softlearning Demonstrators D3RLPY Demonstrators
0.1M Records 1M Records 0.1M Records 1M Records

0.1 7961 ± 612 8956 ± 101 6244 ± 90 6961 ± 220
0.2 - - 6963 ± 53 7622 ± 148

0.25 6058 ± 3319 10091 ± 533 - -
0.5 -124 ± 252 4334 ± 3830 8280 ± 11 8354 ± 116
1 181 ± 119 9124 ± 1573 258 ± 813 8219 ± 500
2 -657 ± 368 450 ± 721 4960 ± 3573 6879 ± 1431
3 -323 ± 49 -302 ± 123 - -

Table 6.1 Policy returns initially increase with the number of demonstrator training steps, be-
fore decreasing sharply. Further, increasing the number of transition records increases policy
returns. Policies were learned using dynamics models trained on individual Softlearning and
D3RLPY demonstrators. The mean and standard deviation of the policy evaluation returns in
the final epoch of training over three random seeds is shown. Returns which exceed those of
the original demonstrator (see Table 4.1) have been bolded.

Demonstrator
Steps (M)

D4RL Mixed-Replay Random Softlearning 0.25M

0.1 -130 ± 47 (3) 170 ± - (1) -226 ± 328 (3)
0.2 -191 ± 136 (3) -243 ± - (1) 115 ± 868 (3)
0.5 -182 ± 179 (3) - (0) -259 ± 35 (3)
1 -351 ± 470 (3) - (0) -395 ± 135 (2)
2 -89 ± 116 (2) - (0) -202 ± - (1)

Table 6.2 No policies with substantially positive returns are obtained when sampling rollout
starting locations from OOD datasets. Policies were learned using dynamics models trained
on D3RLPY demonstration datasets with 1M transitions. Each experiment was run for three
seeds and 0.5M training steps. The format of the results is: mean ± std deviation (number of
runs which completed training).
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6.1.2 Policy Evaluation

We use the methods described in Section 3.2.3 to evaluate the learned policies. Our goal is to
highlight the presence and extent of domain-dependencies for models trained on individual
demonstrator datasets. We will later demonstrate the improvements obtained using multi-
demonstrator datasets.

To determine the prevalence of model exploitation, in Figure 6.2 we compare the real
environment returns (real transitions, real rewards) against those obtained with the learned
dynamics model and reward function that were used in policy training (learned transitions,
learned rewards). We refer to the latter as the self-evaluation returns. The initial state
distribution of the real environment was used in both cases. While the trend is more consistent
for Softlearning demonstrators, the results show a positive correlation between the number
of demonstrator steps and the self-evaluation returns, which is not reflected by the returns in
the real environment. This indicates that errors in the learned models have been exploited –
spurious transitions and rewards have resulted in the policy learning behaviours that do not
yield the same returns in the real environment.

Also shown in Figure 6.2 are the policy returns obtained using the learned dynamics model
with the real reward function. Apart from the 0.1M and 0.2M step D3RLPY demonstrators,
the distribution of returns using the learned reward function are in close agreement with
those of the real reward function. Where there is disagreement, the reward has typically been
under-predicted, although any errors will prevent optimal policies from being identified.

As a further example of the domain dependence exhibited by models trained on individual
demonstrators, Figure 6.3 shows the evaluation of each policy against each learned model
for both D3RLPY and Softlearning demonstrators. If all models made perfect (or at least
identical) predictions across the entire state-action space then they would induce matching
MDPs, and so would yield the same expected return for a given policy (see Section 2.1.1). We
would therefore only see variation across the rows of Figure 6.3, as the policy being evaluated
changes. However, there is significant variation across the columns, which highlights the
poor domain-generalisation performance of the models.

6.2 Multi-Demonstrator Policies

We now use the dynamics models trained on the Novice and Mixed multi-demonstrator
datasets to highlight three key benefits to policy learning that are provided by models trained
with REx, and specifically a REx penalty coefficient of β = 10 (the highest we evaluate).
First, for both datasets, the highest mean evaluation returns were obtained using models
trained with REx and β = 10. Secondly, when the rollout length was increased to h = 10,
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(a) D3RLPY Demonstrators (b) Softlearning Demonstrators

Fig. 6.2 The expected policy returns obtained when using the learned dynamics and reward
models are higher than in the real environment (i.e., when using the real dynamics and reward
function). This indicates the presence of model exploitation. There is generally a close
alignment between the returns using the learned and real reward functions. Policies were
trained using a rollout length h = 5 and MOPO penalty coefficient λ = 5.0. The mean and
standard deviation of the returns over 10 episodes is shown.

(a) D3RLPY Demonstrators (b) Softlearning Demonstrators

Fig. 6.3 The expected policy return is dependent on the model it is evaluated against. Trained
models are denoted by columns, while policies are denoted by rows. In each case, the number
of steps of online training received by the demonstrator used to trained the model/policy is
shown. Policies were trained using a rollout length h = 5 and MOPO penalty coefficient
λ = 5. An empirical estimation of the expected policy return was determined using all other
learned models. The mean and standard deviation of the returns over 10 episodes is shown.



52 Policy Training and Evaluation

models trained without REx either failed to learn policies with positive returns, or failed
to complete 0.5M steps of training at all. Those trained with β = 10 showed improved
robustness and learned policies with positive mean returns. Finally, only models trained with
β = 10 completed 0.5M steps of training when rollout starting locations were sampled from
OOD datasets.

6.2.1 Policy Training

Policies were trained using MOPO penalty coefficients λ ∈ {0,1,5} and rollout lengths
h ∈ {5,10}. While the MOPO paper does not report results for h = 10, we investigate
longer rollout lengths to evaluate whether REx provided sufficient improvements in domain
generalisation performance such that training remains stable under increased exploration,
thus allowing more optimal policies to be learned. In preliminary experiments, dynamics
models trained with REx penalty coefficients β ∈ {0.1,1} typically did not yield policies
with notably differing performance from those trained without REx. Therefore, models
trained with β ∈ {0,5,10} were investigated.

The results in Table 6.3 show that the highest mean return for both datasets was obtained
using models trained with β = 10. For the Novice dataset and a rollout length h = 5,
dynamics models with REx penalty coefficient β = 10 achieved returns with the highest
mean and lowest variance across all settings of λ . When the rollout length was increased to
h = 10, the only runs which completed 0.5M steps of policy training were those which had
used dynamics models trained with β = 10.

Conversely, for the Mixed dataset, the policy with the highest mean return was obtained
for a rollout length h = 10. Models trained without REx could not learn a good policy, but
did all complete training – an improvement over the Novice dataset, which likely arose
due to the superior domain-generalisation performance of the Mixed models. For models
trained with REx, the mean returns increased as β increased. We observed in the previous
chapter that higher REx penalty coefficients increased worst-case OOD performance while
decreasing average OOD performance, which appears to have been a beneficial trade-off for
policy training.

Using the Mixed dataset, no good policies could be learned when rollout starting locations
were sampled from OOD datasets, but models trained with REx and β = 10 were the only
ones which completed training across all OOD datasets for a rollout length h = 10. Table 6.4
shows the policy returns for β ∈ {0,10}. This result echos the observations from the Novice
dataset, where models trained with a REx penalty coefficient β = 10 were the only ones able
to complete training for h = 10.
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Dataset MOPO Penalty
Coefficient, λ

Rollout Length,
h

REx Penalty Coefficient, β

0.0 5.0 10.0
Novice 0.0 5 4936 ± 3752 2580 ± 2984 7186 ± 227
Novice 1.0 5 5000 ± 3757 61 ± 235 7123 ± 537
Novice 5.0 5 3424 ± 2520 746 ± 1314 4734 ± 561
Novice 0.0 10 - (0) - (0) 4238 ± 2243 (2)
Novice 1.0 10 - (0) - (0) 5454 ± 992 (2)
Novice 5.0 10 - (0) - (0) 5474 (1)
Mixed 0.0 5 6834 ± 3191 3066 ± 914 3256 ± 1340
Mixed 1.0 5 7642 ± 673 3995 ± 3917 3577 ± 1758
Mixed 5.0 5 2212 ± 3433 7063 ± 148 7571 ± 680
Mixed 0.0 10 -308 ± 5 474 ± 794 2990 ± 715
Mixed 1.0 10 -316 ± 46 5330 ± 5716 4942 ± 2164
Mixed 5.0 10 -420 ± 50 4704 ± 3413 8128 ± 1053

Table 6.3 Dynamics models trained with REx and β = 10 yield policies with the highest
mean evaluation returns for each multi-demonstrator dataset and improve training stability.
Policies were learned using dynamics models that had been trained on the Novice and Mixed
datasets. The mean and standard deviation (over three random seeds) of the policy evaluation
returns in the final epoch of training are shown. For the Novice dataset and rollout length
h = 10, the number of runs (out of the three attempted) that completed 0.5M steps of policy
training are shown in brackets. The highest mean return for each (REx penalty coefficient,
dataset) tuple have been bolded.
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Rollout Length,
h

Starting Location
Dataset

REx Penalty Coefficient,
β

0.0 10.0
5 D4RL Mixed-Replay -16 ± 140 1173 ± 1004

10 D4RL Mixed-Replay -333 ± 134 1050 ± 830
5 Random -15 ± 339 -414 ± 85

10 Random - -391 ± 35
5 Softlearning 0.25M -285 ± 157 -212 ± 50

10 Softlearning 0.25M - -310 ± 120
Table 6.4 Dynamics models trained with REx (β = 10) improved training stability when
drawing rollout starting locations from OOD datasets. Policies were learned using dynamics
models that had been trained on the Mixed dataset. The MOPO penalty coefficient was
held constant at λ = 5; the value for which highest policy evaluation returns were obtained
when sampling starting locations from the dynamics model’s training dataset. The mean
and standard deviation (over three random seeds) of the policy evaluation returns in the
final epoch of training are shown. Blanks indicate no runs completed 0.5M steps of policy
training.

In the previous chapter, we anticipated that the improved domain-generalisation perfor-
mance of models trained using the Mixed dataset would result in more optimal policies
being learned than for models trained using the Novice dataset. While this is the case for
models trained without REx, the reduction in the performance difference across the datasets
for β = 10 is striking, and unexpected given the gap in domain-generalisation performance
that still exists (see Table 5.2).

6.2.2 MOPO Penalties

In the previous section we largely neglected the influence of the MOPO penalty coefficient, λ ,
on the results, however it clearly had an impact. Values λ ∈ {0,1,5} had been investigated.

For the Novice dataset and rollout length h= 5, policies with higher returns were typically
obtained for λ ∈ {0,1}. This suggests that the penalties may have been too conservative,
and had overly constrained exploration. Replicating analysis conducted by Yu et al. (2021),
Figure 6.4 plots the MOPO penalty against the true model error for transitions sampled
from the rollout experience buffer populated during policy training. While the correlation is
positive, the metric used by MOPO to quantify uncertainty (maximum predicted standard
deviation across the model ensemble – see Section 3.2.3) is clearly an imperfect proxy for
model error.

For dynamics models trained without REx on the Mixed dataset, policies with the highest
returns were again obtained for λ ∈ {0,1}. However, for models trained with REx, policies
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(a) Novice dataset (b) Mixed dataset

Fig. 6.4 Replicating analysis conducted by Yu et al. (2021), MOPO penalties and model
prediction RMSE values sampled from the model replay pool during policy training were
normalised to lie between 0 and 1. Linear regression was performed on the resulting data
and the line of best fit plotted. The R2 score is additionally shown, and highlights the poor
calibration between the MOPO penalty and model error.

with significantly higher return were obtained for λ = 5. This is despite the correlation
between the MOPO penalty and model error being no better than for the Novice experiments
(as shown in Figure 6.4).

Our results therefore appear to indicate that the MOPO penalties can still be beneficial,
even when the domain generalisation performance of the dynamics models has been improved.
However, the lack of strong correlation between the penalties and true model error make the
results sensitive to the choice of penalty coefficient.

6.2.3 Impact of REx on Policy Training

For both datasets, we have observed that dynamics models trained with REx are necessary to
learn policies with positive mean return when rollouts of length h = 10 are used. Policies not
trained with REx models appear to be impacted by the issue of bootstrapped Bellman errors
discussed in Section 2.1.4 – the common cause of training instability in offline model-based
reinforcement learning algorithms that use Q-learning and actor-critic based algorithms.

To illustrate the problem, Figure 6.5 plots the average predicted Q-values over the rollout
transition records collected in the model replay buffer during policy training for the Mixed
dataset, with λ = 5 and β = 10. Note, while negative Q-values would usually indicate the
HalfCheetah is primarily running backwards (i.e., has velocity in the opposite direction to
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that expected), they are observed here because the MOPO penalties were larger than the
original, positive rewards. If training is stable, we expect the policy evaluation returns to
increase as the average Q-value increases, which we see for the REx models. However,
for models trained without REx, the average Q-values tend toward negative infinity (either
immediately, or later in training), while the evaluation returns remain around zero throughout.

The observed degeneracy in the Q-values is caused when the Q-function is evaluated in
OOD states and actions during training. The MOPO algorithm attempts to avoid this by using
reward penalties to deter the learning policy from visiting areas of the state-action space
where there is high model uncertainty. However we already observed that the penalties are
not well correlated with model error (see Figure 6.4). Therefore, poor domain generalisation
performance coupled with ineffective reward penalisation are the likely reasons that policy
learning using models trained without REx failed. Further, given the poor penalty calibration,
we believe the improved OOD performance of the REx dynamics models is the driving force
behind the improved stability in policy training.

6.2.4 Policy Evaluation

Using the same evaluation techniques we had applied to policies trained against individual
demonstrators in Section 6.1.2, we now evaluate the multi-demonstrator policies. We continue
to observe the presence of model exploitation – the expected policy returns obtained using the
learned dynamics and reward model (which we refer to as the self-evaluation returns) exceed
those that are achieved in the real environment (e.g., using the real dynamics and reward
function). Surprisingly, the use of higher MOPO penalty coefficients was found to be the
most important factor for reducing exploitation. When evaluating policies against dynamics
and reward models that differed from the one they were trained with, models trained with the
Mixed dataset consistently yielded expected policy returns within one standard deviation of
the real environment returns. While improved model domain-generalisation performance
appears to have been key, models trained with REx were not observed to further improve
agreement with the real environment returns.

Figure 6.6 shows that exploitation was minimised when using a MOPO penalty coefficient
of λ = 5, and that it was more prevalent for Mixed policies. For individual demonstrator
policies we had observed positive correlation between the number of demonstrator steps
and the self-evaluation returns. The Mixed datasets contains transitions from demonstrators
trained with a higher number of steps than those used for the Novice dataset (see Section
4.5), and so the same observation appears to hold here.

We further evaluated a selection of individual and multi-demonstrator policies against
a range of trained models. This included models trained on both individual and multi-
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(a) Average Policy Evaluation Return (b) Average Q-Value

(c) Average Penalised Reward (d) Average Penalty

Fig. 6.5 Evolution of the average evaluation return, Q-value, penalised reward and MOPO
penalty during the training of policies using dynamics models trained with the Mixed dataset
and a REx penalty coefficient of either β = 0 (ERM) or β = 10 (REx). The results from 3
different seeds are shown separately. MOPO penalty coefficient λ = 5 and rollout length
h = 10 were used. The average penalties values shown have not been multiplied by the
penalty coefficient.
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(a) Novice Dataset (b) Mixed Dataset

Fig. 6.6 The expected policy returns obtained when using the learned dynamics and reward
models are higher than in the real environment (i.e., when using the real dynamics and reward
function). This indicates the continued presence of model exploitation. Higher MOPO
penalty coefficients, λ , appear to reduce exploitation. There is generally a close alignment
between the returns using the learned and real reward. Policies were trained using a rollout
length h = 5. The mean and standard deviation of the returns over 10 episodes is shown.

demonstrator datasets, and with varying REx penalty coefficients. The purpose of this was
to evaluate how well the expected returns predicted by the learned models matched with
those from the real environment, and so the choice of policy should be unimportant. Our
expectation was that models with higher domain-generalisation performance, as evaluated
in the previous chapter, would produce return estimations in closer agreement with the real
environment. As shown in Figure 6.7, we observe that expected evaluation returns within one
standard deviation of the true environment returns were consistently obtained when using
dynamics models trained on the Mixed dataset. This was not typically the case for models
trained against individual demonstrators, nor models trained on the Novice dataset. Given
our observation in the previous chapter that the models trained on the Novice dataset were
not observed to have higher domain generalisation performance than many of the models
trained on individual demonstrators, we were not surprised by this result.

6.3 Conclusions

In our experiments, we found that dynamics models trained with REx could be used to learn
better performing policies, and improve the stability of policy training when increasing the
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(a) D3RLPY policy (b) Softlearning policy

(c) Novice policy (d) Mixed policy

Fig. 6.7 Average returns obtained when evaluating policies against a range of learned models
and the real environment. The training details of the policies evaluated are as follows: (a)
model training dataset: D3RLPY 0.5M Step 1M Transitions; λ = 1; h = 5; (b) model training
dataset: Softlearning 0.25M Step 1M Transitions; λ = 1; h = 5; (c) model training dataset:
Novice; λ = 0; h = 5; (d) model training dataset: Mixed, λ = 5, h = 5. The means and
standard deviations over 10 runs are shown for each of the learned models, along with the
mean and standard deviation over 10 runs in the real environment, which do not depend on
the learned model.
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length of rollouts or sampling their starting locations from OOD datasets. However, it was
not possible to learn good policies when rollout starting locations were sampled OOD, and
we identified the presence of model exploitation.

For policies trained against individual demonstrators, we did not observe significant
correlation between the domain generalisation performance of the dynamics model used and
the return of the learned policy. The rollout length h and MOPO penalty coefficient λ should
ideally be tuned for each dynamics model, however the variation in rollout starting locations
is likely having a significant impact. Given we observed that individual demonstrator policies
could not be learned using OOD rollout starting locations, we were unable to correct for this.

We observed that dynamics models trained using a larger number of transitions yielded
policies with higher returns, even though these models were shown in the previous chapter to
have lower domain generalisation performance. Given that rollout starting locations were
sampled from the dynamics model training dataset, we theorise that improved performance
in the locality of the training distribution may be the cause of these benefits.

We identified that the correlation between the MOPO penalty and true model error is
positive, but very weak. However, for the Mixed dataset, a larger penalty was necessary to
train policies with higher returns, and we observed larger penalties similarly reduced model
exploitation. While we know REx improved robustness to distributional shifts, we don’t
expect to be able to entirely eliminate OOD errors. It therefore makes sense that combining
REx trained models with existing SOTA methods that look to minimise distributional shift
by estimating model uncertainty may be beneficial.

As is common across offline model-based RL literature, we assumed we could evaluate
our learned policy in the real environment (Cang et al., 2021; Kidambi et al., 2020; Yu et al.,
2020). However, in real-world scenarios, we may well have taken an offline approach because
naive interaction with the environment is too dangerous or expensive, and so it’s unlikely
we’d be willing to test our policies online. We should, therefore, consider using off-policy
evaluation (OPE) methods, which seek to evaluate policies, and perform hyper-parameter
tuning, using only the data available to us (Prudencio et al., 2022). Voloshin et al. (2019),
Le Paine et al. (2020) and Fu et al. (2021) survey and benchmark existing OPE methods. A
subcategory of OPE methods are those which learn a dynamics model and reward function
from the data, in the same way as we have done in our work. Therefore, models with
improved robustness to distributional shift would potentially be a beneficial contribution to
the OPE field. However, in our experiments we have seen that the issue of model exploitation,
and the variability in expected policy returns obtained across learned models, persists when
using REx. Future work may therefore look to evaluate policies learned offline using other
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OPE methods, such as Fitted Q-Evaluation (FQE) (Le et al., 2019) or importance sampling
with a learned behaviour policy (Fu et al., 2021; Kostrikov et al., 2020).

Finally, while all policies were trained across 3 random seeds, future works might consider
running experiments for a larger number of seeds to evaluate the robustness of the results.



Chapter 7

Conclusions

In this final chapter we draw together our findings and make recommendations for future
avenues of work.

7.1 Key Findings

In this work, we took what we believe is a novel approach to reducing the issue of distri-
butional shift that commonly hinders policy training in offline model-based RL methods.
Whereas existing SOTA algorithms (Kidambi et al., 2020; Yu et al., 2020) have attempted
to limit distributional shift, our aim was to improve robustness to shifts by applying Risk
Extrapolation (REx) (Krueger et al., 2020) to the training of dynamics models.

To this end, we demonstrated in Section 5.3.2 that dynamics models trained with REx
showed improved domain generalisation performance, and achieved greater equality of risks
across out-of-distribution domains. As Krueger et al. (2020) demonstrated may be necessary,
we saw that achieving this greater equality led to increased risks for the domains with the
lowest risk. In the case of our Mixed multi-demonstrator dataset, as we increased the strength
with which we enforced the equality of the training risks (by increasing the penalty coefficient
β ), we observed that the worst-case OOD risk was reduced at the expense of the average
OOD risk.

In Section 6.2 we demonstrated that dynamics models trained with the largest REx penalty
coefficient investigated (β = 10) yielded the policies with the highest average return. Further,
these models increased training stability when using longer rollouts and when sampling
rollout starting locations from OOD datasets. However, good policies could not always be
learned, and model exploitation was identified. Future works should determine whether REx
penalty coefficients β > 10 further aid policy training.
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Even though we showed them to be poorly correlated with true model error, we observed
in certain experiments that MOPO penalties were beneficial to policy training, and that they
reduced model exploitation. Future works could investigate the impact of using dynamics
models trained with REx alongside other SOTA offline model-based RL methods, such as
MOReL (Kidambi et al., 2020) or COMBO (Yu et al., 2021).

7.2 Future Work

In addition to those already mentioned, we identify the following possible future avenues of
investigation.

Demonstrator Diversity

In Chapter 4 we used two implementations of the SAC algorithm to train policies online
as proxies for real-word demonstrators. These were then used to generate demonstration
datasets. As mentioned in Section 4.6, ideally a larger number of algorithms would have been
employed to introduce greater diversity into the datasets. Further, while we only generated
two multi-demonstrator datasets, we encourage the evaluation of our methods over a broader
collection.

Domain Generalisation Method

While we chose to use REx in our work, as discussed in Section 2.2, there are a significant
number of domain-generalisation methods which could have been used. Future works might
consider adapting our experiment pipeline to investigate a broader range of these methods.
A good starting point might be Group DRO (Sagawa et al., 2019). As discussed in Section
2.2.3, REx can be thought of as performing distributionally robust optimisation (DRO) over
an extrapolated set of domains, whereas Group DRO is equivalent to considering convex
combinations of the training risks (Krueger et al., 2020). Using Group DRO, we are unlikely
to see the same flattening of the risk plane as was observed in Section 5.3.2. However, if the
OOD domains with the worst-case risk can be expressed as a mixture of the training domains,
then Group DRO may be able to improve worst-case risk without significantly deteriorating
the performance in other domains.

Training Pipeline Improvements

Given our work involved learning both dynamics models and policies, the collection of
hyperparameters to be tuned was significant. Further, our ultimate goal was to learn a policy
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with the highest returns, but, as shown in Section 6.1.1, a number of factors beyond the
domain-generalisation performance of the trained dynamics model can influence the policy
obtained.

In our work, we focused on evaluating a diverse selection of design choices (dynamics
model training time, REx penalty coefficient, etc.) to gain an appreciation of how each
impacted offline policy returns. Future works may look to refine the training pipeline by, for
example, streamlining the dynamics model selection process.

Gulrajani and Lopez-Paz (2020) propose multiple methods for evaluating domain gen-
eralisation algorithms, which could equally be applied to tuning the hyperparameters of
dynamics models. We highlight the leave-one-domain-out cross-validation approach. Akin
to the standard LOO-CV technique, we would train an equal number of models as we have
training datasets, leaving one dataset out in each case. Each model would be evaluated on
the domain that was held-out, and an average taken across models. The hyperparameters
maximising this average would then be used to retrain the model using all training domains.
Consistently training models with this method would be beneficial to the further investigation
of the correlation between model domain-generalisation performance and the return of offline
policies.
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Appendix A

Implementation Details

A.1 MOPO Hyperparameters

The hyperparameters used for HalfCheetah MuJoCo environment D4RL datasets in the
original MOPO paper (Yu et al., 2020) are provided in Table A.1.

Dataset Type Rollout Length, h Penalty Coefficient, λ

Random 5 0.5
Medium 1 1
Medium-Replay 5 1
Medium-Expert 5 1

Table A.1 Hyperparameters used in the MOPO paper (Yu et al., 2020) for the HalfCheetah
MuJoCo environment D4RL datasets.

A.2 D4RL Score Normalisation

Fu et al. (2020) use Equation A.1 to normalise the undiscounted average evaluation returns
during the final iteration of policy training to lie roughly between 0 and 100. A normalised
score of 0 corresponds to the average returns (over 100 episodes) of an agent taking actions
uniformly at random. A score of 100 corresponds to the average returns for a domain-specific
expert, which, in the case of Gym-MuJoCo environments, corresponds to a SAC agent
(Haarnoja et al., 2018b). For the HalfCheetah environment the random and expert scores are
-280.2 and 12135.0 respectively.

normalised score = 100 · score− random score
expert score− random score

(A.1)
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A.3 D4RL MuJoCo Dataset Descriptions

Descriptions of the MuJoCo environment D4RL datasets are as follows (Fu et al., 2020):

1. Random: 1M samples from a randomly initialised policy.

2. Expert: 1M samples from a policy trained to completion with SAC.

3. Medium: 1M samples from a policy trained to 1/3 the performance of the expert.

4. Medium-Replay: the replay buffer of a policy trained to the performance of a medium
agent. 101k samples in total.

5. Medium-Expert: slightly less than 2M samples with a 50-50 split of medium and
expert data.



Appendix B

Additional Experiments

B.1 Individual Demonstrator MBPO Policies

Table B.1 shows the results for training policies on individual demonstrators using rollout
length h = 5.0 and MOPO penalty coefficient λ = 0. When the MOPO penalty coefficient is
removed, we are left with the MBPO algorithm (Janner et al., 2019).
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Demonstrator
Steps (million)

Softlearning D3RLPY
0.1M Records 1M Records 0.1M Records 1M Records

0.1 6088 ± 1033 8991 ± 134 5792 ± 488 4759 ± 3797
0.2 - - 6598 ± 394 7964 ± 114

0.25 218 ± 678 3196 ± 2753 - -
0.5 -457 ± 65 2802 ± 2039 7601 ± 403 8674 ± 138
1 57 ± 39 3265 ± 1319 -340 ± 38 5363 ± 3466
2 -1044 ± 769 -43 ± 176 2458 ± 3956 6638 ± 1573
3 -279 ± 109 -314 ± 53 - -

Table B.1 Policies were learned using dynamics models trained on individual Softlearning
and D3RLPY demonstrators. The mean and standard deviation of the policy evaluation
returns in the final epoch of training over three random seeds is shown. Datasets containing
0.1M and 1M transitions were used, and the first column indicates the number of steps the
demonstrator was trained online for. The mean and standard deviation over three random
seeds is shown.
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